Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version |
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressbas 16996 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
4 | inss2 4169 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | eqsstrrdi 3981 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
6 | reldmress 16992 | . . . . . 6 ⊢ Rel dom ↾s | |
7 | 6 | ovprc2 7347 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
8 | 1, 7 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
9 | 8 | fveq2d 6808 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
10 | base0 16966 | . . . 4 ⊢ ∅ = (Base‘∅) | |
11 | 0ss 4336 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
12 | 10, 11 | eqsstrri 3961 | . . 3 ⊢ (Base‘∅) ⊆ 𝐵 |
13 | 9, 12 | eqsstrdi 3980 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 ↾s cress 16990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-1cn 10979 ax-addcl 10981 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12024 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 |
This theorem is referenced by: funcres2c 17666 resscatc 17873 submnd0 18463 resscntz 18987 subcmn 19487 evpmss 20840 phlssphl 20913 frlmplusgval 21020 frlmvscafval 21022 lsslindf 21086 islinds3 21090 resspsrvsca 21236 subrgpsr 21237 ply1bascl 21423 ressprdsds 23573 cphsubrglem 24390 cphsscph 24464 |
Copyright terms: Public domain | W3C validator |