| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . 3 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbasssg 17185 | . 2 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| 4 | inss2 4197 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 5 | 3, 4 | sstri 3953 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 ⊆ wss 3911 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 ↾s cress 17178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-1cn 11105 ax-addcl 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-nn 12166 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 |
| This theorem is referenced by: funcres2c 17847 resscatc 18053 submnd0 18674 resscntz 19249 subcmn 19753 rngqiprng1elbas 21230 rng2idl1cntr 21249 evpmss 21530 phlssphl 21603 frlmplusgval 21708 frlmvscafval 21710 lsslindf 21774 islinds3 21778 resspsrvsca 21921 subrgpsr 21922 ply1bascl 22123 evls1fvcl 22297 ressprdsds 24294 cphsubrglem 25112 cphsscph 25186 ressply1mon1p 33532 unitscyglem5 42182 mplsubrgcl 42531 |
| Copyright terms: Public domain | W3C validator |