MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasss Structured version   Visualization version   GIF version

Theorem ressbasss 17156
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasss (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasss
StepHypRef Expression
1 ressbas.r . . 3 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . 3 𝐵 = (Base‘𝑊)
31, 2ressbasssg 17154 . 2 (Base‘𝑅) ⊆ (𝐴𝐵)
4 inss2 4187 . 2 (𝐴𝐵) ⊆ 𝐵
53, 4sstri 3939 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cin 3896  wss 3897  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-1cn 11070  ax-addcl 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12132  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148
This theorem is referenced by:  funcres2c  17816  resscatc  18022  submnd0  18677  resscntz  19251  subcmn  19755  rngqiprng1elbas  21229  rng2idl1cntr  21248  evpmss  21529  phlssphl  21602  frlmplusgval  21707  frlmvscafval  21709  lsslindf  21773  islinds3  21777  resspsrvsca  21920  subrgpsr  21921  ply1bascl  22122  evls1fvcl  22296  ressprdsds  24292  cphsubrglem  25110  cphsscph  25184  ressply1mon1p  33538  unitscyglem5  42298  mplsubrgcl  42647
  Copyright terms: Public domain W3C validator