| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . 3 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbasssg 17184 | . 2 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| 4 | inss2 4197 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 5 | 3, 4 | sstri 3953 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 ↾s cress 17177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-1cn 11104 ax-addcl 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12165 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 |
| This theorem is referenced by: funcres2c 17846 resscatc 18052 submnd0 18673 resscntz 19248 subcmn 19752 rngqiprng1elbas 21229 rng2idl1cntr 21248 evpmss 21529 phlssphl 21602 frlmplusgval 21707 frlmvscafval 21709 lsslindf 21773 islinds3 21777 resspsrvsca 21920 subrgpsr 21921 ply1bascl 22122 evls1fvcl 22296 ressprdsds 24293 cphsubrglem 25111 cphsscph 25185 ressply1mon1p 33531 unitscyglem5 42181 mplsubrgcl 42530 |
| Copyright terms: Public domain | W3C validator |