MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasss Structured version   Visualization version   GIF version

Theorem ressbasss 17284
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasss (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasss
StepHypRef Expression
1 ressbas.r . . 3 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . 3 𝐵 = (Base‘𝑊)
31, 2ressbasssg 17282 . 2 (Base‘𝑅) ⊆ (𝐴𝐵)
4 inss2 4238 . 2 (𝐴𝐵) ⊆ 𝐵
53, 4sstri 3993 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3950  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275
This theorem is referenced by:  funcres2c  17948  resscatc  18154  submnd0  18776  resscntz  19351  subcmn  19855  rngqiprng1elbas  21296  rng2idl1cntr  21315  evpmss  21604  phlssphl  21677  frlmplusgval  21784  frlmvscafval  21786  lsslindf  21850  islinds3  21854  resspsrvsca  21997  subrgpsr  21998  ply1bascl  22205  evls1fvcl  22379  ressprdsds  24381  cphsubrglem  25211  cphsscph  25285  ressply1mon1p  33593  unitscyglem5  42200  mplsubrgcl  42558
  Copyright terms: Public domain W3C validator