MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasss Structured version   Visualization version   GIF version

Theorem ressbasss 16946
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasss (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasss
StepHypRef Expression
1 ressbas.r . . . 4 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . . 4 𝐵 = (Base‘𝑊)
31, 2ressbas 16943 . . 3 (𝐴 ∈ V → (𝐴𝐵) = (Base‘𝑅))
4 inss2 4169 . . 3 (𝐴𝐵) ⊆ 𝐵
53, 4eqsstrrdi 3981 . 2 (𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵)
6 reldmress 16939 . . . . . 6 Rel dom ↾s
76ovprc2 7309 . . . . 5 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
81, 7eqtrid 2792 . . . 4 𝐴 ∈ V → 𝑅 = ∅)
98fveq2d 6773 . . 3 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅))
10 base0 16913 . . . 4 ∅ = (Base‘∅)
11 0ss 4336 . . . 4 ∅ ⊆ 𝐵
1210, 11eqsstrri 3961 . . 3 (Base‘∅) ⊆ 𝐵
139, 12eqsstrdi 3980 . 2 𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵)
145, 13pm2.61i 182 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2110  Vcvv 3431  cin 3891  wss 3892  c0 4262  cfv 6431  (class class class)co 7269  Basecbs 16908  s cress 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-1cn 10928  ax-addcl 10930
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-nn 11972  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938
This theorem is referenced by:  funcres2c  17613  resscatc  17820  submnd0  18410  resscntz  18934  subcmn  19434  evpmss  20787  phlssphl  20860  frlmplusgval  20967  frlmvscafval  20969  lsslindf  21033  islinds3  21037  resspsrvsca  21183  subrgpsr  21184  ply1bascl  21370  ressprdsds  23520  cphsubrglem  24337  cphsscph  24411
  Copyright terms: Public domain W3C validator