MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasss Structured version   Visualization version   GIF version

Theorem ressbasss 17218
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasss (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasss
StepHypRef Expression
1 ressbas.r . . 3 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . 3 𝐵 = (Base‘𝑊)
31, 2ressbasssg 17216 . 2 (Base‘𝑅) ⊆ (𝐴𝐵)
4 inss2 4224 . 2 (𝐴𝐵) ⊆ 𝐵
53, 4sstri 3982 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cin 3938  wss 3939  cfv 6543  (class class class)co 7416  Basecbs 17179  s cress 17208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12243  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209
This theorem is referenced by:  funcres2c  17889  resscatc  18097  submnd0  18722  resscntz  19288  subcmn  19796  rngqiprng1elbas  21180  rng2idl1cntr  21199  evpmss  21522  phlssphl  21595  frlmplusgval  21702  frlmvscafval  21704  lsslindf  21768  islinds3  21772  resspsrvsca  21926  subrgpsr  21927  ply1bascl  22131  evls1fvcl  22303  ressprdsds  24295  cphsubrglem  25123  cphsscph  25197  ressply1mon1p  33310  mplsubrgcl  41836
  Copyright terms: Public domain W3C validator