Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version |
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressbas 16943 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
4 | inss2 4169 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | eqsstrrdi 3981 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
6 | reldmress 16939 | . . . . . 6 ⊢ Rel dom ↾s | |
7 | 6 | ovprc2 7309 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
8 | 1, 7 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
9 | 8 | fveq2d 6773 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
10 | base0 16913 | . . . 4 ⊢ ∅ = (Base‘∅) | |
11 | 0ss 4336 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
12 | 10, 11 | eqsstrri 3961 | . . 3 ⊢ (Base‘∅) ⊆ 𝐵 |
13 | 9, 12 | eqsstrdi 3980 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 ↾s cress 16937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-1cn 10928 ax-addcl 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-nn 11972 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 |
This theorem is referenced by: funcres2c 17613 resscatc 17820 submnd0 18410 resscntz 18934 subcmn 19434 evpmss 20787 phlssphl 20860 frlmplusgval 20967 frlmvscafval 20969 lsslindf 21033 islinds3 21037 resspsrvsca 21183 subrgpsr 21184 ply1bascl 21370 ressprdsds 23520 cphsubrglem 24337 cphsscph 24411 |
Copyright terms: Public domain | W3C validator |