![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version |
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . 3 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressbasssg 17295 | . 2 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
4 | inss2 4259 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | sstri 4018 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 |
This theorem is referenced by: funcres2c 17968 resscatc 18176 submnd0 18801 resscntz 19373 subcmn 19879 rngqiprng1elbas 21319 rng2idl1cntr 21338 evpmss 21627 phlssphl 21700 frlmplusgval 21807 frlmvscafval 21809 lsslindf 21873 islinds3 21877 resspsrvsca 22020 subrgpsr 22021 ply1bascl 22226 evls1fvcl 22400 ressprdsds 24402 cphsubrglem 25230 cphsscph 25304 ressply1mon1p 33558 unitscyglem5 42156 mplsubrgcl 42503 |
Copyright terms: Public domain | W3C validator |