MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasss Structured version   Visualization version   GIF version

Theorem ressbasss 17187
Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasss (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasss
StepHypRef Expression
1 ressbas.r . . 3 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . 3 𝐵 = (Base‘𝑊)
31, 2ressbasssg 17185 . 2 (Base‘𝑅) ⊆ (𝐴𝐵)
4 inss2 4197 . 2 (𝐴𝐵) ⊆ 𝐵
53, 4sstri 3953 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3910  wss 3911  cfv 6500  (class class class)co 7370  Basecbs 17157  s cress 17178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-1cn 11105  ax-addcl 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-nn 12166  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179
This theorem is referenced by:  funcres2c  17847  resscatc  18053  submnd0  18674  resscntz  19249  subcmn  19753  rngqiprng1elbas  21230  rng2idl1cntr  21249  evpmss  21530  phlssphl  21603  frlmplusgval  21708  frlmvscafval  21710  lsslindf  21774  islinds3  21778  resspsrvsca  21921  subrgpsr  21922  ply1bascl  22123  evls1fvcl  22297  ressprdsds  24294  cphsubrglem  25112  cphsscph  25186  ressply1mon1p  33532  unitscyglem5  42182  mplsubrgcl  42531
  Copyright terms: Public domain W3C validator