| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasss | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasss | ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . 3 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbasssg 17154 | . 2 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| 4 | inss2 4187 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 5 | 3, 4 | sstri 3939 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 |
| This theorem is referenced by: funcres2c 17816 resscatc 18022 submnd0 18677 resscntz 19251 subcmn 19755 rngqiprng1elbas 21229 rng2idl1cntr 21248 evpmss 21529 phlssphl 21602 frlmplusgval 21707 frlmvscafval 21709 lsslindf 21773 islinds3 21777 resspsrvsca 21920 subrgpsr 21921 ply1bascl 22122 evls1fvcl 22296 ressprdsds 24292 cphsubrglem 25110 cphsscph 25184 ressply1mon1p 33538 unitscyglem5 42298 mplsubrgcl 42647 |
| Copyright terms: Public domain | W3C validator |