MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idssfct Structured version   Visualization version   GIF version

Theorem 1idssfct 16727
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Distinct variable group:   𝑛,𝑁

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 12304 . . 3 1 ∈ ℕ
2 nnz 12660 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1dvds 16319 . . . 4 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
5 breq1 5169 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ∥ 𝑁))
65elrab 3708 . . . 4 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
76biimpri 228 . . 3 ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
81, 4, 7sylancr 586 . 2 (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
9 iddvds 16318 . . . 4 (𝑁 ∈ ℤ → 𝑁𝑁)
102, 9syl 17 . . 3 (𝑁 ∈ ℕ → 𝑁𝑁)
11 breq1 5169 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
1211elrab 3708 . . . 4 (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑁))
1312biimpri 228 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
1410, 13mpdan 686 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
158, 14prssd 4847 1 (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {crab 3443  wss 3976  {cpr 4650   class class class wbr 5166  1c1 11185  cn 12293  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rrecex 11256  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-neg 11523  df-nn 12294  df-z 12640  df-dvds 16303
This theorem is referenced by:  isprm2  16729
  Copyright terms: Public domain W3C validator