MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idssfct Structured version   Visualization version   GIF version

Theorem 1idssfct 15809
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Distinct variable group:   𝑛,𝑁

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 11392 . . 3 1 ∈ ℕ
2 nnz 11756 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1dvds 15413 . . . 4 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
5 breq1 4891 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ∥ 𝑁))
65elrab 3572 . . . 4 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
76biimpri 220 . . 3 ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
81, 4, 7sylancr 581 . 2 (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
9 iddvds 15412 . . . 4 (𝑁 ∈ ℤ → 𝑁𝑁)
102, 9syl 17 . . 3 (𝑁 ∈ ℕ → 𝑁𝑁)
11 breq1 4891 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
1211elrab 3572 . . . 4 (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑁))
1312biimpri 220 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
1410, 13mpdan 677 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
158, 14prssd 4586 1 (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  {crab 3094  wss 3792  {cpr 4400   class class class wbr 4888  1c1 10275  cn 11379  cz 11733  cdvds 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rrecex 10346  ax-cnre 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-neg 10611  df-nn 11380  df-z 11734  df-dvds 15397
This theorem is referenced by:  isprm2  15811
  Copyright terms: Public domain W3C validator