![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1idssfct | Structured version Visualization version GIF version |
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
1idssfct | ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12222 | . . 3 ⊢ 1 ∈ ℕ | |
2 | nnz 12578 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1dvds 16213 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∥ 𝑁) |
5 | breq1 5151 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁)) | |
6 | 5 | elrab 3683 | . . . 4 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁)) |
7 | 6 | biimpri 227 | . . 3 ⊢ ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
8 | 1, 4, 7 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
9 | iddvds 16212 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∥ 𝑁) |
11 | breq1 5151 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁)) | |
12 | 11 | elrab 3683 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁)) |
13 | 12 | biimpri 227 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
14 | 10, 13 | mpdan 685 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
15 | 8, 14 | prssd 4825 | 1 ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {crab 3432 ⊆ wss 3948 {cpr 4630 class class class wbr 5148 1c1 11110 ℕcn 12211 ℤcz 12557 ∥ cdvds 16196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rrecex 11181 ax-cnre 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-neg 11446 df-nn 12212 df-z 12558 df-dvds 16197 |
This theorem is referenced by: isprm2 16618 |
Copyright terms: Public domain | W3C validator |