MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idssfct Structured version   Visualization version   GIF version

Theorem 1idssfct 16366
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
1idssfct (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Distinct variable group:   𝑛,𝑁

Proof of Theorem 1idssfct
StepHypRef Expression
1 1nn 11967 . . 3 1 ∈ ℕ
2 nnz 12325 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3 1dvds 15961 . . . 4 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
5 breq1 5081 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ∥ 𝑁))
65elrab 3625 . . . 4 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁))
76biimpri 227 . . 3 ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
81, 4, 7sylancr 586 . 2 (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
9 iddvds 15960 . . . 4 (𝑁 ∈ ℤ → 𝑁𝑁)
102, 9syl 17 . . 3 (𝑁 ∈ ℕ → 𝑁𝑁)
11 breq1 5081 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
1211elrab 3625 . . . 4 (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑁))
1312biimpri 227 . . 3 ((𝑁 ∈ ℕ ∧ 𝑁𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
1410, 13mpdan 683 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
158, 14prssd 4760 1 (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3069  wss 3891  {cpr 4568   class class class wbr 5078  1c1 10856  cn 11956  cz 12302  cdvds 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rrecex 10927  ax-cnre 10928
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-neg 11191  df-nn 11957  df-z 12303  df-dvds 15945
This theorem is referenced by:  isprm2  16368
  Copyright terms: Public domain W3C validator