| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1idssfct | Structured version Visualization version GIF version | ||
| Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| 1idssfct | ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12204 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | nnz 12557 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 1dvds 16247 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∥ 𝑁) |
| 5 | breq1 5113 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁)) | |
| 6 | 5 | elrab 3662 | . . . 4 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁)) |
| 7 | 6 | biimpri 228 | . . 3 ⊢ ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| 8 | 1, 4, 7 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| 9 | iddvds 16246 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
| 10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∥ 𝑁) |
| 11 | breq1 5113 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁)) | |
| 12 | 11 | elrab 3662 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁)) |
| 13 | 12 | biimpri 228 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| 14 | 10, 13 | mpdan 687 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| 15 | 8, 14 | prssd 4789 | 1 ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 {cpr 4594 class class class wbr 5110 1c1 11076 ℕcn 12193 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-nn 12194 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: isprm2 16659 |
| Copyright terms: Public domain | W3C validator |