![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1idssfct | Structured version Visualization version GIF version |
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
1idssfct | ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12169 | . . 3 ⊢ 1 ∈ ℕ | |
2 | nnz 12525 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1dvds 16158 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∥ 𝑁) |
5 | breq1 5109 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁)) | |
6 | 5 | elrab 3646 | . . . 4 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁)) |
7 | 6 | biimpri 227 | . . 3 ⊢ ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
8 | 1, 4, 7 | sylancr 588 | . 2 ⊢ (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
9 | iddvds 16157 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∥ 𝑁) |
11 | breq1 5109 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁)) | |
12 | 11 | elrab 3646 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁)) |
13 | 12 | biimpri 227 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
14 | 10, 13 | mpdan 686 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
15 | 8, 14 | prssd 4783 | 1 ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 {crab 3406 ⊆ wss 3911 {cpr 4589 class class class wbr 5106 1c1 11057 ℕcn 12158 ℤcz 12504 ∥ cdvds 16141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rrecex 11128 ax-cnre 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-neg 11393 df-nn 12159 df-z 12505 df-dvds 16142 |
This theorem is referenced by: isprm2 16563 |
Copyright terms: Public domain | W3C validator |