Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1idssfct | Structured version Visualization version GIF version |
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
1idssfct | ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11967 | . . 3 ⊢ 1 ∈ ℕ | |
2 | nnz 12325 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1dvds 15961 | . . . 4 ⊢ (𝑁 ∈ ℤ → 1 ∥ 𝑁) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∥ 𝑁) |
5 | breq1 5081 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁)) | |
6 | 5 | elrab 3625 | . . . 4 ⊢ (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (1 ∈ ℕ ∧ 1 ∥ 𝑁)) |
7 | 6 | biimpri 227 | . . 3 ⊢ ((1 ∈ ℕ ∧ 1 ∥ 𝑁) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
8 | 1, 4, 7 | sylancr 586 | . 2 ⊢ (𝑁 ∈ ℕ → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
9 | iddvds 15960 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 𝑁) | |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∥ 𝑁) |
11 | breq1 5081 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁)) | |
12 | 11 | elrab 3625 | . . . 4 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ↔ (𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁)) |
13 | 12 | biimpri 227 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁) → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
14 | 10, 13 | mpdan 683 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
15 | 8, 14 | prssd 4760 | 1 ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 {cpr 4568 class class class wbr 5078 1c1 10856 ℕcn 11956 ℤcz 12302 ∥ cdvds 15944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-neg 11191 df-nn 11957 df-z 12303 df-dvds 15945 |
This theorem is referenced by: isprm2 16368 |
Copyright terms: Public domain | W3C validator |