MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2OLD Structured version   Visualization version   GIF version

Theorem psercn2OLD 26485
Description: Obsolete version of psercn2 26484 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
psercn2OLD (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem psercn2OLD
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12945 . 2 0 = (ℤ‘0)
2 0zd 12651 . 2 (𝜑 → 0 ∈ ℤ)
3 pserulm.y . . . . . . 7 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
4 cnvimass 6111 . . . . . . . 8 (abs “ (0[,]𝑀)) ⊆ dom abs
5 absf 15386 . . . . . . . . 9 abs:ℂ⟶ℝ
65fdmi 6758 . . . . . . . 8 dom abs = ℂ
74, 6sseqtri 4045 . . . . . . 7 (abs “ (0[,]𝑀)) ⊆ ℂ
83, 7sstrdi 4021 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
98adantr 480 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ)
109resmptd 6069 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
11 simplr 768 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ)
12 elfznn0 13677 . . . . . . . . . 10 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
1312adantl 481 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
14 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 26472 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
1611, 13, 15syl2anc 583 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
17 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1817, 1eleqtrdi 2854 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
1918adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ‘0))
20 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
2221ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2322adantlr 714 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
24 expcl 14130 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2524adantll 713 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2623, 25mulcld 11310 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2712, 26sylan2 592 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2816, 19, 27fsumser 15778 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘)) = (seq0( + , (𝐺𝑦))‘𝑖))
2928mpteq2dva 5266 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
30 eqid 2740 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3130cnfldtopon 24824 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 fzfid 14024 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin)
3431a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
35 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3621, 12, 35syl2an 595 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴𝑘) ∈ ℂ)
3734, 34, 36cnmptc 23691 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3812adantl 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
3930expcn 24915 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4130mulcn 24908 . . . . . . . . . 10 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4241a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4334, 37, 40, 42cnmpt12f 23695 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4430, 32, 33, 43fsumcn 24913 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4530cncfcn1 24956 . . . . . . 7 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4644, 45eleqtrrdi 2855 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ (ℂ–cn→ℂ))
4729, 46eqeltrrd 2845 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ))
48 rescncf 24942 . . . . 5 (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ)))
499, 47, 48sylc 65 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ))
5010, 49eqeltrrd 2845 . . 3 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (𝑆cn→ℂ))
51 pserulm.h . . 3 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
5250, 51fmptd 7148 . 2 (𝜑𝐻:ℕ0⟶(𝑆cn→ℂ))
53 pserf.f . . 3 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
54 pserf.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
55 pserulm.m . . 3 (𝜑𝑀 ∈ ℝ)
56 pserulm.l . . 3 (𝜑𝑀 < 𝑅)
5714, 53, 20, 54, 51, 55, 56, 3pserulm 26483 . 2 (𝜑𝐻(⇝𝑢𝑆)𝐹)
581, 2, 52, 57ulmcn 26460 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  0cn0 12553  cuz 12903  [,]cicc 13410  ...cfz 13567  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  Σcsu 15734  TopOpenctopn 17481  fldccnfld 21387  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ulm 26438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator