| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercn2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of psercn2 26348 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| pserulm.h | ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| pserulm.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| pserulm.l | ⊢ (𝜑 → 𝑀 < 𝑅) |
| pserulm.y | ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
| Ref | Expression |
|---|---|
| psercn2OLD | ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12795 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12501 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | pserulm.y | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) | |
| 4 | cnvimass 6037 | . . . . . . . 8 ⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs | |
| 5 | absf 15263 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 6 | 5 | fdmi 6667 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 7 | 4, 6 | sseqtri 3986 | . . . . . . 7 ⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
| 8 | 3, 7 | sstrdi 3950 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ) |
| 10 | 9 | resmptd 5995 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 11 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) | |
| 12 | elfznn0 13541 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) | |
| 13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 14 | pserf.g | . . . . . . . . . 10 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26336 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 16 | 11, 13, 15 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 17 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 18 | 17, 1 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ≥‘0)) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ≥‘0)) |
| 20 | pserf.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 21 | 20 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
| 22 | 21 | ffvelcdmda 7022 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 23 | 22 | adantlr 715 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 24 | expcl 14004 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | |
| 25 | 24 | adantll 714 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
| 26 | 23, 25 | mulcld 11154 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 27 | 12, 26 | sylan2 593 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 28 | 16, 19, 27 | fsumser 15655 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
| 29 | 28 | mpteq2dva 5188 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 30 | eqid 2729 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 31 | 30 | cnfldtopon 24686 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 33 | fzfid 13898 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin) | |
| 34 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 35 | ffvelcdm 7019 | . . . . . . . . . . 11 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 36 | 21, 12, 35 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
| 37 | 34, 34, 36 | cnmptc 23565 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 38 | 12 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 39 | 30 | expcn 24779 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 40 | 38, 39 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 41 | 30 | mulcn 24772 | . . . . . . . . . 10 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 42 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 43 | 34, 37, 40, 42 | cnmpt12f 23569 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 44 | 30, 32, 33, 43 | fsumcn 24777 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 45 | 30 | cncfcn1 24820 | . . . . . . 7 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 46 | 44, 45 | eleqtrrdi 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
| 47 | 29, 46 | eqeltrrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
| 48 | rescncf 24806 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) | |
| 49 | 9, 47, 48 | sylc 65 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
| 50 | 10, 49 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
| 51 | pserulm.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) | |
| 52 | 50, 51 | fmptd 7052 | . 2 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
| 53 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 54 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 55 | pserulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 56 | pserulm.l | . . 3 ⊢ (𝜑 → 𝑀 < 𝑅) | |
| 57 | 14, 53, 20, 54, 51, 55, 56, 3 | pserulm 26347 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
| 58 | 1, 2, 52, 57 | ulmcn 26324 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5622 dom cdm 5623 ↾ cres 5625 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supcsup 9349 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 · cmul 11033 ℝ*cxr 11167 < clt 11168 ℕ0cn0 12402 ℤ≥cuz 12753 [,]cicc 13269 ...cfz 13428 seqcseq 13926 ↑cexp 13986 abscabs 15159 ⇝ cli 15409 Σcsu 15611 TopOpenctopn 17343 ℂfldccnfld 21279 TopOnctopon 22813 Cn ccn 23127 ×t ctx 23463 –cn→ccncf 24785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ulm 26302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |