| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercn2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of psercn2 26384 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| pserulm.h | ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| pserulm.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| pserulm.l | ⊢ (𝜑 → 𝑀 < 𝑅) |
| pserulm.y | ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
| Ref | Expression |
|---|---|
| psercn2OLD | ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12894 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12600 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | pserulm.y | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) | |
| 4 | cnvimass 6069 | . . . . . . . 8 ⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs | |
| 5 | absf 15356 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 6 | 5 | fdmi 6717 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 7 | 4, 6 | sseqtri 4007 | . . . . . . 7 ⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
| 8 | 3, 7 | sstrdi 3971 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ) |
| 10 | 9 | resmptd 6027 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 11 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) | |
| 12 | elfznn0 13637 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) | |
| 13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 14 | pserf.g | . . . . . . . . . 10 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26372 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 16 | 11, 13, 15 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 17 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 18 | 17, 1 | eleqtrdi 2844 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ≥‘0)) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ≥‘0)) |
| 20 | pserf.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 21 | 20 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
| 22 | 21 | ffvelcdmda 7074 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 23 | 22 | adantlr 715 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 24 | expcl 14097 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | |
| 25 | 24 | adantll 714 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
| 26 | 23, 25 | mulcld 11255 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 27 | 12, 26 | sylan2 593 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 28 | 16, 19, 27 | fsumser 15746 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
| 29 | 28 | mpteq2dva 5214 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 30 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 31 | 30 | cnfldtopon 24721 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 33 | fzfid 13991 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin) | |
| 34 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 35 | ffvelcdm 7071 | . . . . . . . . . . 11 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 36 | 21, 12, 35 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
| 37 | 34, 34, 36 | cnmptc 23600 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 38 | 12 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 39 | 30 | expcn 24814 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 40 | 38, 39 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 41 | 30 | mulcn 24807 | . . . . . . . . . 10 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 42 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 43 | 34, 37, 40, 42 | cnmpt12f 23604 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 44 | 30, 32, 33, 43 | fsumcn 24812 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 45 | 30 | cncfcn1 24855 | . . . . . . 7 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 46 | 44, 45 | eleqtrrdi 2845 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
| 47 | 29, 46 | eqeltrrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
| 48 | rescncf 24841 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) | |
| 49 | 9, 47, 48 | sylc 65 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
| 50 | 10, 49 | eqeltrrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
| 51 | pserulm.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) | |
| 52 | 50, 51 | fmptd 7104 | . 2 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
| 53 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 54 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 55 | pserulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 56 | pserulm.l | . . 3 ⊢ (𝜑 → 𝑀 < 𝑅) | |
| 57 | 14, 53, 20, 54, 51, 55, 56, 3 | pserulm 26383 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
| 58 | 1, 2, 52, 57 | ulmcn 26360 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supcsup 9452 ℂcc 11127 ℝcr 11128 0cc0 11129 + caddc 11132 · cmul 11134 ℝ*cxr 11268 < clt 11269 ℕ0cn0 12501 ℤ≥cuz 12852 [,]cicc 13365 ...cfz 13524 seqcseq 14019 ↑cexp 14079 abscabs 15253 ⇝ cli 15500 Σcsu 15702 TopOpenctopn 17435 ℂfldccnfld 21315 TopOnctopon 22848 Cn ccn 23162 ×t ctx 23498 –cn→ccncf 24820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-ulm 26338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |