| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psercn2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of psercn2 26352 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| pserulm.h | ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| pserulm.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| pserulm.l | ⊢ (𝜑 → 𝑀 < 𝑅) |
| pserulm.y | ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
| Ref | Expression |
|---|---|
| psercn2OLD | ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12766 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12472 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | pserulm.y | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) | |
| 4 | cnvimass 6028 | . . . . . . . 8 ⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs | |
| 5 | absf 15237 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
| 6 | 5 | fdmi 6658 | . . . . . . . 8 ⊢ dom abs = ℂ |
| 7 | 4, 6 | sseqtri 3981 | . . . . . . 7 ⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
| 8 | 3, 7 | sstrdi 3945 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ) |
| 10 | 9 | resmptd 5986 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 11 | simplr 768 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) | |
| 12 | elfznn0 13512 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) | |
| 13 | 12 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 14 | pserf.g | . . . . . . . . . 10 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26340 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 16 | 11, 13, 15 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 17 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 18 | 17, 1 | eleqtrdi 2839 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ≥‘0)) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ≥‘0)) |
| 20 | pserf.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 21 | 20 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
| 22 | 21 | ffvelcdmda 7012 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 23 | 22 | adantlr 715 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 24 | expcl 13978 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | |
| 25 | 24 | adantll 714 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
| 26 | 23, 25 | mulcld 11124 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 27 | 12, 26 | sylan2 593 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 28 | 16, 19, 27 | fsumser 15629 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
| 29 | 28 | mpteq2dva 5182 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 30 | eqid 2730 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 31 | 30 | cnfldtopon 24690 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 33 | fzfid 13872 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin) | |
| 34 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 35 | ffvelcdm 7009 | . . . . . . . . . . 11 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 36 | 21, 12, 35 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
| 37 | 34, 34, 36 | cnmptc 23570 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 38 | 12 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 39 | 30 | expcn 24783 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 40 | 38, 39 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 41 | 30 | mulcn 24776 | . . . . . . . . . 10 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 42 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 43 | 34, 37, 40, 42 | cnmpt12f 23574 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 44 | 30, 32, 33, 43 | fsumcn 24781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 45 | 30 | cncfcn1 24824 | . . . . . . 7 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 46 | 44, 45 | eleqtrrdi 2840 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
| 47 | 29, 46 | eqeltrrd 2830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
| 48 | rescncf 24810 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) | |
| 49 | 9, 47, 48 | sylc 65 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
| 50 | 10, 49 | eqeltrrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
| 51 | pserulm.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) | |
| 52 | 50, 51 | fmptd 7042 | . 2 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
| 53 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
| 54 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 55 | pserulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 56 | pserulm.l | . . 3 ⊢ (𝜑 → 𝑀 < 𝑅) | |
| 57 | 14, 53, 20, 54, 51, 55, 56, 3 | pserulm 26351 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
| 58 | 1, 2, 52, 57 | ulmcn 26328 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 ⊆ wss 3900 class class class wbr 5089 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 “ cima 5617 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 supcsup 9319 ℂcc 10996 ℝcr 10997 0cc0 10998 + caddc 11001 · cmul 11003 ℝ*cxr 11137 < clt 11138 ℕ0cn0 12373 ℤ≥cuz 12724 [,]cicc 13240 ...cfz 13399 seqcseq 13900 ↑cexp 13960 abscabs 15133 ⇝ cli 15383 Σcsu 15585 TopOpenctopn 17317 ℂfldccnfld 21284 TopOnctopon 22818 Cn ccn 23132 ×t ctx 23468 –cn→ccncf 24789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cn 23135 df-cnp 23136 df-tx 23470 df-hmeo 23663 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-ulm 26306 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |