MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn2 Structured version   Visualization version   GIF version

Theorem psercn2 24729
Description: Since by pserulm 24728 the series converges uniformly, it is also continuous by ulmcn 24705. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
pserulm.h 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
pserulm.m (𝜑𝑀 ∈ ℝ)
pserulm.l (𝜑𝑀 < 𝑅)
pserulm.y (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
Assertion
Ref Expression
psercn2 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑛,𝑟,𝑥,𝑦,𝐴   𝑖,𝑗,𝑦,𝐻   𝑖,𝑀,𝑗,𝑦   𝑥,𝑖,𝑟   𝑖,𝐺,𝑗,𝑟,𝑦   𝑆,𝑖,𝑗,𝑦   𝜑,𝑖,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑖)   𝑅(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)

Proof of Theorem psercn2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12092 . 2 0 = (ℤ‘0)
2 0zd 11803 . 2 (𝜑 → 0 ∈ ℤ)
3 pserulm.y . . . . . . 7 (𝜑𝑆 ⊆ (abs “ (0[,]𝑀)))
4 cnvimass 5786 . . . . . . . 8 (abs “ (0[,]𝑀)) ⊆ dom abs
5 absf 14556 . . . . . . . . 9 abs:ℂ⟶ℝ
65fdmi 6351 . . . . . . . 8 dom abs = ℂ
74, 6sseqtri 3886 . . . . . . 7 (abs “ (0[,]𝑀)) ⊆ ℂ
83, 7syl6ss 3863 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
98adantr 473 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ)
109resmptd 5750 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) = (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
11 simplr 757 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ)
12 elfznn0 12814 . . . . . . . . . 10 (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0)
1312adantl 474 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
14 pserf.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 24717 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
1611, 13, 15syl2anc 576 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺𝑦)‘𝑘) = ((𝐴𝑘) · (𝑦𝑘)))
17 simpr 477 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1817, 1syl6eleq 2869 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
1918adantr 473 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ‘0))
20 pserf.a . . . . . . . . . . . . 13 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 473 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
2221ffvelrnda 6674 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2322adantlr 703 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
24 expcl 13260 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2524adantll 702 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦𝑘) ∈ ℂ)
2623, 25mulcld 10458 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2712, 26sylan2 584 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴𝑘) · (𝑦𝑘)) ∈ ℂ)
2816, 19, 27fsumser 14945 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘)) = (seq0( + , (𝐺𝑦))‘𝑖))
2928mpteq2dva 5018 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
30 eqid 2771 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3130cnfldtopon 23109 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
33 fzfid 13154 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin)
3431a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
35 ffvelrn 6672 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3621, 12, 35syl2an 587 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴𝑘) ∈ ℂ)
3734, 34, 36cnmptc 21989 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3812adantl 474 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0)
3930expcn 23198 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4130mulcn 23193 . . . . . . . . . 10 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4241a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4334, 37, 40, 42cnmpt12f 21993 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4430, 32, 33, 43fsumcn 23196 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4530cncfcn1 23236 . . . . . . 7 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4644, 45syl6eleqr 2870 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴𝑘) · (𝑦𝑘))) ∈ (ℂ–cn→ℂ))
4729, 46eqeltrrd 2860 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ))
48 rescncf 23223 . . . . 5 (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ)))
499, 47, 48sylc 65 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆cn→ℂ))
5010, 49eqeltrrd 2860 . . 3 ((𝜑𝑖 ∈ ℕ0) → (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)) ∈ (𝑆cn→ℂ))
51 pserulm.h . . 3 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦𝑆 ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
5250, 51fmptd 6699 . 2 (𝜑𝐻:ℕ0⟶(𝑆cn→ℂ))
53 pserf.f . . 3 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
54 pserf.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
55 pserulm.m . . 3 (𝜑𝑀 ∈ ℝ)
56 pserulm.l . . 3 (𝜑𝑀 < 𝑅)
5714, 53, 20, 54, 51, 55, 56, 3pserulm 24728 . 2 (𝜑𝐻(⇝𝑢𝑆)𝐹)
581, 2, 52, 57ulmcn 24705 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  {crab 3085  wss 3822   class class class wbr 4925  cmpt 5004  ccnv 5402  dom cdm 5403  cres 5405  cima 5406  wf 6181  cfv 6185  (class class class)co 6974  supcsup 8697  cc 10331  cr 10332  0cc0 10333   + caddc 10336   · cmul 10338  *cxr 10471   < clt 10472  0cn0 11705  cuz 12056  [,]cicc 12555  ...cfz 12706  seqcseq 13182  cexp 13242  abscabs 14452  cli 14700  Σcsu 14901  TopOpenctopn 16549  fldccnfld 20262  TopOnctopon 21237   Cn ccn 21551   ×t ctx 21887  cnccncf 23202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fsupp 8627  df-fi 8668  df-sup 8699  df-inf 8700  df-oi 8767  df-card 9160  df-cda 9386  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-q 12161  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-fl 12975  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-limsup 14687  df-clim 14704  df-rlim 14705  df-sum 14902  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-hom 16443  df-cco 16444  df-rest 16550  df-topn 16551  df-0g 16569  df-gsum 16570  df-topgen 16571  df-pt 16572  df-prds 16575  df-xrs 16629  df-qtop 16634  df-imas 16635  df-xps 16637  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cn 21554  df-cnp 21555  df-tx 21889  df-hmeo 22082  df-xms 22648  df-ms 22649  df-tms 22650  df-cncf 23204  df-ulm 24683
This theorem is referenced by:  psercn  24732
  Copyright terms: Public domain W3C validator