![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psercn2 | Structured version Visualization version GIF version |
Description: Since by pserulm 26451 the series converges uniformly, it is also continuous by ulmcn 26428. (Contributed by Mario Carneiro, 3-Mar-2015.) Avoid ax-mulf 11238. (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
pserulm.h | ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
pserulm.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
pserulm.l | ⊢ (𝜑 → 𝑀 < 𝑅) |
pserulm.y | ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
Ref | Expression |
---|---|
psercn2 | ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12916 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12622 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | pserulm.y | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) | |
4 | cnvimass 6091 | . . . . . . . 8 ⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs | |
5 | absf 15342 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
6 | 5 | fdmi 6739 | . . . . . . . 8 ⊢ dom abs = ℂ |
7 | 4, 6 | sseqtri 4016 | . . . . . . 7 ⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
8 | 3, 7 | sstrdi 3992 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ) |
10 | 9 | resmptd 6049 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
11 | simplr 767 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) | |
12 | elfznn0 13648 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) | |
13 | 12 | adantl 480 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
14 | pserf.g | . . . . . . . . . 10 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
15 | 14 | pserval2 26440 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
16 | 11, 13, 15 | syl2anc 582 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
17 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
18 | 17, 1 | eleqtrdi 2836 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ≥‘0)) |
19 | 18 | adantr 479 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ≥‘0)) |
20 | pserf.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
21 | 20 | adantr 479 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
22 | 21 | ffvelcdmda 7098 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
23 | 22 | adantlr 713 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
24 | expcl 14099 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | |
25 | 24 | adantll 712 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
26 | 23, 25 | mulcld 11284 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
27 | 12, 26 | sylan2 591 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
28 | 16, 19, 27 | fsumser 15734 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
29 | 28 | mpteq2dva 5253 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
30 | eqid 2726 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
31 | 30 | cnfldtopon 24790 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
33 | fzfid 13993 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin) | |
34 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
35 | ffvelcdm 7095 | . . . . . . . . . . 11 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
36 | 21, 12, 35 | syl2an 594 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
37 | 34, 34, 36 | cnmptc 23657 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
38 | 12 | adantl 480 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
39 | 30 | expcn 24881 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
40 | 38, 39 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
41 | 30 | mpomulcn 24876 | . . . . . . . . . 10 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
42 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
43 | oveq12 7433 | . . . . . . . . 9 ⊢ ((𝑢 = (𝐴‘𝑘) ∧ 𝑣 = (𝑦↑𝑘)) → (𝑢 · 𝑣) = ((𝐴‘𝑘) · (𝑦↑𝑘))) | |
44 | 34, 37, 40, 34, 34, 42, 43 | cnmpt12 23662 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
45 | 30, 32, 33, 44 | fsumcn 24879 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
46 | 30 | cncfcn1 24922 | . . . . . . 7 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
47 | 45, 46 | eleqtrrdi 2837 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
48 | 29, 47 | eqeltrrd 2827 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
49 | rescncf 24908 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) | |
50 | 9, 48, 49 | sylc 65 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
51 | 10, 50 | eqeltrrd 2827 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
52 | pserulm.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) | |
53 | 51, 52 | fmptd 7128 | . 2 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
54 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
55 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
56 | pserulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
57 | pserulm.l | . . 3 ⊢ (𝜑 → 𝑀 < 𝑅) | |
58 | 14, 54, 20, 55, 52, 56, 57, 3 | pserulm 26451 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
59 | 1, 2, 53, 58 | ulmcn 26428 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3947 class class class wbr 5153 ↦ cmpt 5236 ◡ccnv 5681 dom cdm 5682 ↾ cres 5684 “ cima 5685 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 supcsup 9483 ℂcc 11156 ℝcr 11157 0cc0 11158 + caddc 11161 · cmul 11163 ℝ*cxr 11297 < clt 11298 ℕ0cn0 12524 ℤ≥cuz 12874 [,]cicc 13381 ...cfz 13538 seqcseq 14021 ↑cexp 14081 abscabs 15239 ⇝ cli 15486 Σcsu 15690 TopOpenctopn 17436 ℂfldccnfld 21343 TopOnctopon 22903 Cn ccn 23219 ×t ctx 23555 –cn→ccncf 24887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cn 23222 df-cnp 23223 df-tx 23557 df-hmeo 23750 df-xms 24317 df-ms 24318 df-tms 24319 df-cncf 24889 df-ulm 26406 |
This theorem is referenced by: psercn 26456 |
Copyright terms: Public domain | W3C validator |