Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psercn2 | Structured version Visualization version GIF version |
Description: Since by pserulm 25579 the series converges uniformly, it is also continuous by ulmcn 25556. (Contributed by Mario Carneiro, 3-Mar-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
pserulm.h | ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
pserulm.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
pserulm.l | ⊢ (𝜑 → 𝑀 < 𝑅) |
pserulm.y | ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
Ref | Expression |
---|---|
psercn2 | ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12618 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12329 | . 2 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | pserulm.y | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) | |
4 | cnvimass 5991 | . . . . . . . 8 ⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs | |
5 | absf 15047 | . . . . . . . . 9 ⊢ abs:ℂ⟶ℝ | |
6 | 5 | fdmi 6614 | . . . . . . . 8 ⊢ dom abs = ℂ |
7 | 4, 6 | sseqtri 3958 | . . . . . . 7 ⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
8 | 3, 7 | sstrdi 3934 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆ ℂ) |
10 | 9 | resmptd 5950 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
11 | simplr 766 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) | |
12 | elfznn0 13347 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) | |
13 | 12 | adantl 482 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
14 | pserf.g | . . . . . . . . . 10 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
15 | 14 | pserval2 25568 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
16 | 11, 13, 15 | syl2anc 584 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
17 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
18 | 17, 1 | eleqtrdi 2849 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ≥‘0)) |
19 | 18 | adantr 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈ (ℤ≥‘0)) |
20 | pserf.a | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
21 | 20 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
22 | 21 | ffvelrnda 6963 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
23 | 22 | adantlr 712 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
24 | expcl 13798 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | |
25 | 24 | adantll 711 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
26 | 23, 25 | mulcld 10993 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
27 | 12, 26 | sylan2 593 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
28 | 16, 19, 27 | fsumser 15440 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
29 | 28 | mpteq2dva 5176 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
30 | eqid 2738 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
31 | 30 | cnfldtopon 23944 | . . . . . . . . 9 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
32 | 31 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
33 | fzfid 13691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (0...𝑖) ∈ Fin) | |
34 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
35 | ffvelrn 6961 | . . . . . . . . . . 11 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
36 | 21, 12, 35 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
37 | 34, 34, 36 | cnmptc 22811 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
38 | 12 | adantl 482 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
39 | 30 | expcn 24033 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
40 | 38, 39 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
41 | 30 | mulcn 24028 | . . . . . . . . . 10 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
42 | 41 | a1i 11 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
43 | 34, 37, 40, 42 | cnmpt12f 22815 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
44 | 30, 32, 33, 43 | fsumcn 24031 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
45 | 30 | cncfcn1 24072 | . . . . . . 7 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
46 | 44, 45 | eleqtrrdi 2850 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
47 | 29, 46 | eqeltrrd 2840 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
48 | rescncf 24058 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) | |
49 | 9, 47, 48 | sylc 65 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
50 | 10, 49 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
51 | pserulm.h | . . 3 ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) | |
52 | 50, 51 | fmptd 6990 | . 2 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
53 | pserf.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
54 | pserf.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
55 | pserulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
56 | pserulm.l | . . 3 ⊢ (𝜑 → 𝑀 < 𝑅) | |
57 | 14, 53, 20, 54, 51, 55, 56, 3 | pserulm 25579 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
58 | 1, 2, 52, 57 | ulmcn 25556 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3888 class class class wbr 5076 ↦ cmpt 5159 ◡ccnv 5590 dom cdm 5591 ↾ cres 5593 “ cima 5594 ⟶wf 6431 ‘cfv 6435 (class class class)co 7277 supcsup 9197 ℂcc 10867 ℝcr 10868 0cc0 10869 + caddc 10872 · cmul 10874 ℝ*cxr 11006 < clt 11007 ℕ0cn0 12231 ℤ≥cuz 12580 [,]cicc 13080 ...cfz 13237 seqcseq 13719 ↑cexp 13780 abscabs 14943 ⇝ cli 15191 Σcsu 15395 TopOpenctopn 17130 ℂfldccnfld 20595 TopOnctopon 22057 Cn ccn 22373 ×t ctx 22709 –cn→ccncf 24037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-inf2 9397 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-pre-sup 10947 ax-addf 10948 ax-mulf 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7976 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-2o 8296 df-er 8496 df-map 8615 df-pm 8616 df-ixp 8684 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-fsupp 9127 df-fi 9168 df-sup 9199 df-inf 9200 df-oi 9267 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12436 df-uz 12581 df-q 12687 df-rp 12729 df-xneg 12846 df-xadd 12847 df-xmul 12848 df-ico 13083 df-icc 13084 df-fz 13238 df-fzo 13381 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cn 22376 df-cnp 22377 df-tx 22711 df-hmeo 22904 df-xms 23471 df-ms 23472 df-tms 23473 df-cncf 24039 df-ulm 25534 |
This theorem is referenced by: psercn 25583 |
Copyright terms: Public domain | W3C validator |