| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 12920 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 0zd 12625 |
. 2
⊢ (𝜑 → 0 ∈
ℤ) |
| 3 | | pserulm.y |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) |
| 4 | | cnvimass 6100 |
. . . . . . . 8
⊢ (◡abs “ (0[,]𝑀)) ⊆ dom abs |
| 5 | | absf 15376 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
| 6 | 5 | fdmi 6747 |
. . . . . . . 8
⊢ dom abs =
ℂ |
| 7 | 4, 6 | sseqtri 4032 |
. . . . . . 7
⊢ (◡abs “ (0[,]𝑀)) ⊆ ℂ |
| 8 | 3, 7 | sstrdi 3996 |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ⊆
ℂ) |
| 10 | 9 | resmptd 6058 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( +
, (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) = (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 11 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑦 ∈ ℂ) |
| 12 | | elfznn0 13660 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑖) → 𝑘 ∈ ℕ0) |
| 13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 14 | | pserf.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 15 | 14 | pserval2 26454 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 16 | 11, 13, 15 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐺‘𝑦)‘𝑘) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 17 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
| 18 | 17, 1 | eleqtrdi 2851 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
(ℤ≥‘0)) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) → 𝑖 ∈
(ℤ≥‘0)) |
| 20 | | pserf.a |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ) |
| 22 | 21 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈
ℂ) |
| 23 | 22 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈
ℂ) |
| 24 | | expcl 14120 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑦↑𝑘) ∈
ℂ) |
| 25 | 24 | adantll 714 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (𝑦↑𝑘) ∈
ℂ) |
| 26 | 23, 25 | mulcld 11281 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 27 | 12, 26 | sylan2 593 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑖)) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
| 28 | 16, 19, 27 | fsumser 15766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑦 ∈ ℂ) →
Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘)) = (seq0( + , (𝐺‘𝑦))‘𝑖)) |
| 29 | 28 | mpteq2dva 5242 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 30 | | eqid 2737 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 31 | 30 | cnfldtopon 24803 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 33 | | fzfid 14014 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(0...𝑖) ∈
Fin) |
| 34 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 35 | | ffvelcdm 7101 |
. . . . . . . . . . 11
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 36 | 21, 12, 35 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝐴‘𝑘) ∈ ℂ) |
| 37 | 34, 34, 36 | cnmptc 23670 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝐴‘𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 38 | 12 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → 𝑘 ∈ ℕ0) |
| 39 | 30 | expcn 24896 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑦 ∈ ℂ
↦ (𝑦↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 41 | 30 | mpomulcn 24891 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 43 | | oveq12 7440 |
. . . . . . . . 9
⊢ ((𝑢 = (𝐴‘𝑘) ∧ 𝑣 = (𝑦↑𝑘)) → (𝑢 · 𝑣) = ((𝐴‘𝑘) · (𝑦↑𝑘))) |
| 44 | 34, 37, 40, 34, 34, 42, 43 | cnmpt12 23675 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑖)) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 45 | 30, 32, 33, 44 | fsumcn 24894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 46 | 30 | cncfcn1 24937 |
. . . . . . 7
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 47 | 45, 46 | eleqtrrdi 2852 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑖)((𝐴‘𝑘) · (𝑦↑𝑘))) ∈ (ℂ–cn→ℂ)) |
| 48 | 29, 47 | eqeltrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (seq0( +
, (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ)) |
| 49 | | rescncf 24923 |
. . . . 5
⊢ (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (seq0( +
, (𝐺‘𝑦))‘𝑖)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ))) |
| 50 | 9, 48, 49 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑦 ∈ ℂ ↦ (seq0( +
, (𝐺‘𝑦))‘𝑖)) ↾ 𝑆) ∈ (𝑆–cn→ℂ)) |
| 51 | 10, 50 | eqeltrrd 2842 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖)) ∈ (𝑆–cn→ℂ)) |
| 52 | | pserulm.h |
. . 3
⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) |
| 53 | 51, 52 | fmptd 7134 |
. 2
⊢ (𝜑 → 𝐻:ℕ0⟶(𝑆–cn→ℂ)) |
| 54 | | pserf.f |
. . 3
⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
| 55 | | pserf.r |
. . 3
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 56 | | pserulm.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 57 | | pserulm.l |
. . 3
⊢ (𝜑 → 𝑀 < 𝑅) |
| 58 | 14, 54, 20, 55, 52, 56, 57, 3 | pserulm 26465 |
. 2
⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) |
| 59 | 1, 2, 53, 58 | ulmcn 26442 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) |