Step | Hyp | Ref
| Expression |
1 | | nn0uz 12863 |
. 2
β’
β0 = (β€β₯β0) |
2 | | 0zd 12569 |
. 2
β’ (π β 0 β
β€) |
3 | | pserulm.y |
. . . . . . 7
β’ (π β π β (β‘abs β (0[,]π))) |
4 | | cnvimass 6080 |
. . . . . . . 8
β’ (β‘abs β (0[,]π)) β dom abs |
5 | | absf 15283 |
. . . . . . . . 9
β’
abs:ββΆβ |
6 | 5 | fdmi 6729 |
. . . . . . . 8
β’ dom abs =
β |
7 | 4, 6 | sseqtri 4018 |
. . . . . . 7
β’ (β‘abs β (0[,]π)) β β |
8 | 3, 7 | sstrdi 3994 |
. . . . . 6
β’ (π β π β β) |
9 | 8 | adantr 481 |
. . . . 5
β’ ((π β§ π β β0) β π β
β) |
10 | 9 | resmptd 6040 |
. . . 4
β’ ((π β§ π β β0) β ((π¦ β β β¦ (seq0( +
, (πΊβπ¦))βπ)) βΎ π) = (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) |
11 | | simplr 767 |
. . . . . . . . 9
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β (0...π)) β π¦ β β) |
12 | | elfznn0 13593 |
. . . . . . . . . 10
β’ (π β (0...π) β π β β0) |
13 | 12 | adantl 482 |
. . . . . . . . 9
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β (0...π)) β π β β0) |
14 | | pserf.g |
. . . . . . . . . 10
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) |
15 | 14 | pserval2 25922 |
. . . . . . . . 9
β’ ((π¦ β β β§ π β β0)
β ((πΊβπ¦)βπ) = ((π΄βπ) Β· (π¦βπ))) |
16 | 11, 13, 15 | syl2anc 584 |
. . . . . . . 8
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β (0...π)) β ((πΊβπ¦)βπ) = ((π΄βπ) Β· (π¦βπ))) |
17 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β π β
β0) |
18 | 17, 1 | eleqtrdi 2843 |
. . . . . . . . 9
β’ ((π β§ π β β0) β π β
(β€β₯β0)) |
19 | 18 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β β0) β§ π¦ β β) β π β
(β€β₯β0)) |
20 | | pserf.a |
. . . . . . . . . . . . 13
β’ (π β π΄:β0βΆβ) |
21 | 20 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β π΄:β0βΆβ) |
22 | 21 | ffvelcdmda 7086 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ π β β0)
β (π΄βπ) β
β) |
23 | 22 | adantlr 713 |
. . . . . . . . . 10
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β β0)
β (π΄βπ) β
β) |
24 | | expcl 14044 |
. . . . . . . . . . 11
β’ ((π¦ β β β§ π β β0)
β (π¦βπ) β
β) |
25 | 24 | adantll 712 |
. . . . . . . . . 10
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β β0)
β (π¦βπ) β
β) |
26 | 23, 25 | mulcld 11233 |
. . . . . . . . 9
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β β0)
β ((π΄βπ) Β· (π¦βπ)) β β) |
27 | 12, 26 | sylan2 593 |
. . . . . . . 8
β’ ((((π β§ π β β0) β§ π¦ β β) β§ π β (0...π)) β ((π΄βπ) Β· (π¦βπ)) β β) |
28 | 16, 19, 27 | fsumser 15675 |
. . . . . . 7
β’ (((π β§ π β β0) β§ π¦ β β) β
Ξ£π β (0...π)((π΄βπ) Β· (π¦βπ)) = (seq0( + , (πΊβπ¦))βπ)) |
29 | 28 | mpteq2dva 5248 |
. . . . . 6
β’ ((π β§ π β β0) β (π¦ β β β¦
Ξ£π β (0...π)((π΄βπ) Β· (π¦βπ))) = (π¦ β β β¦ (seq0( + , (πΊβπ¦))βπ))) |
30 | | eqid 2732 |
. . . . . . . 8
β’
(TopOpenββfld) =
(TopOpenββfld) |
31 | 30 | cnfldtopon 24298 |
. . . . . . . . 9
β’
(TopOpenββfld) β
(TopOnββ) |
32 | 31 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π β β0) β
(TopOpenββfld) β
(TopOnββ)) |
33 | | fzfid 13937 |
. . . . . . . 8
β’ ((π β§ π β β0) β
(0...π) β
Fin) |
34 | 31 | a1i 11 |
. . . . . . . . 9
β’ (((π β§ π β β0) β§ π β (0...π)) β
(TopOpenββfld) β
(TopOnββ)) |
35 | | ffvelcdm 7083 |
. . . . . . . . . . 11
β’ ((π΄:β0βΆβ β§
π β
β0) β (π΄βπ) β β) |
36 | 21, 12, 35 | syl2an 596 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π β (0...π)) β (π΄βπ) β β) |
37 | 34, 34, 36 | cnmptc 23165 |
. . . . . . . . 9
β’ (((π β§ π β β0) β§ π β (0...π)) β (π¦ β β β¦ (π΄βπ)) β
((TopOpenββfld) Cn
(TopOpenββfld))) |
38 | 12 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π β (0...π)) β π β β0) |
39 | 30 | expcn 24387 |
. . . . . . . . . 10
β’ (π β β0
β (π¦ β β
β¦ (π¦βπ)) β
((TopOpenββfld) Cn
(TopOpenββfld))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β β0) β§ π β (0...π)) β (π¦ β β β¦ (π¦βπ)) β
((TopOpenββfld) Cn
(TopOpenββfld))) |
41 | 30 | mulcn 24382 |
. . . . . . . . . 10
β’ Β·
β (((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld)) |
42 | 41 | a1i 11 |
. . . . . . . . 9
β’ (((π β§ π β β0) β§ π β (0...π)) β Β· β
(((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld))) |
43 | 34, 37, 40, 42 | cnmpt12f 23169 |
. . . . . . . 8
β’ (((π β§ π β β0) β§ π β (0...π)) β (π¦ β β β¦ ((π΄βπ) Β· (π¦βπ))) β
((TopOpenββfld) Cn
(TopOpenββfld))) |
44 | 30, 32, 33, 43 | fsumcn 24385 |
. . . . . . 7
β’ ((π β§ π β β0) β (π¦ β β β¦
Ξ£π β (0...π)((π΄βπ) Β· (π¦βπ))) β
((TopOpenββfld) Cn
(TopOpenββfld))) |
45 | 30 | cncfcn1 24426 |
. . . . . . 7
β’
(ββcnββ) =
((TopOpenββfld) Cn
(TopOpenββfld)) |
46 | 44, 45 | eleqtrrdi 2844 |
. . . . . 6
β’ ((π β§ π β β0) β (π¦ β β β¦
Ξ£π β (0...π)((π΄βπ) Β· (π¦βπ))) β (ββcnββ)) |
47 | 29, 46 | eqeltrrd 2834 |
. . . . 5
β’ ((π β§ π β β0) β (π¦ β β β¦ (seq0( +
, (πΊβπ¦))βπ)) β (ββcnββ)) |
48 | | rescncf 24412 |
. . . . 5
β’ (π β β β ((π¦ β β β¦ (seq0( +
, (πΊβπ¦))βπ)) β (ββcnββ) β ((π¦ β β β¦ (seq0( + , (πΊβπ¦))βπ)) βΎ π) β (πβcnββ))) |
49 | 9, 47, 48 | sylc 65 |
. . . 4
β’ ((π β§ π β β0) β ((π¦ β β β¦ (seq0( +
, (πΊβπ¦))βπ)) βΎ π) β (πβcnββ)) |
50 | 10, 49 | eqeltrrd 2834 |
. . 3
β’ ((π β§ π β β0) β (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ)) β (πβcnββ)) |
51 | | pserulm.h |
. . 3
β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) |
52 | 50, 51 | fmptd 7113 |
. 2
β’ (π β π»:β0βΆ(πβcnββ)) |
53 | | pserf.f |
. . 3
β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) |
54 | | pserf.r |
. . 3
β’ π
= sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*,
< ) |
55 | | pserulm.m |
. . 3
β’ (π β π β β) |
56 | | pserulm.l |
. . 3
β’ (π β π < π
) |
57 | 14, 53, 20, 54, 51, 55, 56, 3 | pserulm 25933 |
. 2
β’ (π β π»(βπ’βπ)πΉ) |
58 | 1, 2, 52, 57 | ulmcn 25910 |
1
β’ (π β πΉ β (πβcnββ)) |