MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem1 Structured version   Visualization version   GIF version

Theorem radcnvlem1 26474
Description: Lemma for radcnvlt1 26479, radcnvle 26481. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
radcnvlem1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlem1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝐺   𝑚,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12945 . . 3 0 = (ℤ‘0)
2 0zd 12651 . . 3 (𝜑 → 0 ∈ ℤ)
3 1rp 13061 . . . 4 1 ∈ ℝ+
43a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
5 radcnvlem2.y . . . 4 (𝜑𝑌 ∈ ℂ)
6 pser.g . . . . 5 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
76pserval2 26472 . . . 4 ((𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
85, 7sylan 579 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
9 fvexd 6935 . . . 4 (𝜑 → (𝐺𝑌) ∈ V)
10 radcnvlem2.c . . . 4 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
11 radcnv.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
126, 11, 5psergf 26473 . . . . 5 (𝜑 → (𝐺𝑌):ℕ0⟶ℂ)
1312ffvelcdmda 7118 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) ∈ ℂ)
141, 2, 9, 10, 13serf0 15729 . . 3 (𝜑 → (𝐺𝑌) ⇝ 0)
151, 2, 4, 8, 14climi0 15558 . 2 (𝜑 → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
16 simprl 770 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑗 ∈ ℕ0)
17 nn0re 12562 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1817adantl 481 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
19 psergf.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
2019adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑋 ∈ ℂ)
2120abscld 15485 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℝ)
225adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑌 ∈ ℂ)
2322abscld 15485 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℝ)
24 0red 11293 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2519abscld 15485 . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) ∈ ℝ)
265abscld 15485 . . . . . . . . . . 11 (𝜑 → (abs‘𝑌) ∈ ℝ)
2719absge0d 15493 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝑋))
28 radcnvlem2.a . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
2924, 25, 26, 27, 28lelttrd 11448 . . . . . . . . . 10 (𝜑 → 0 < (abs‘𝑌))
3029gt0ne0d 11854 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ≠ 0)
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ≠ 0)
3221, 23, 31redivcld 12122 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
33 reexpcl 14129 . . . . . . 7 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3432, 33sylan 579 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3518, 34remulcld 11320 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) ∈ ℝ)
36 eqid 2740 . . . . 5 (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))
3735, 36fmptd 7148 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))):ℕ0⟶ℝ)
3837ffvelcdmda 7118 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) ∈ ℝ)
39 nn0re 12562 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
4039adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
416, 11, 19psergf 26473 . . . . . . . . . 10 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
4241ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
4342abscld 15485 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
4440, 43remulcld 11320 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
45 radcnvlem1.h . . . . . . 7 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
4644, 45fmptd 7148 . . . . . 6 (𝜑𝐻:ℕ0⟶ℝ)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝐻:ℕ0⟶ℝ)
4847ffvelcdmda 7118 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℝ)
4948recnd 11318 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℂ)
5025, 26, 30redivcld 12122 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
5150recnd 11318 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ)
52 divge0 12164 . . . . . . . 8 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋)) ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5325, 27, 26, 29, 52syl22anc 838 . . . . . . 7 (𝜑 → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5450, 53absidd 15471 . . . . . 6 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) = ((abs‘𝑋) / (abs‘𝑌)))
5526recnd 11318 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ∈ ℂ)
5655mulridd 11307 . . . . . . . 8 (𝜑 → ((abs‘𝑌) · 1) = (abs‘𝑌))
5728, 56breqtrrd 5194 . . . . . . 7 (𝜑 → (abs‘𝑋) < ((abs‘𝑌) · 1))
58 1red 11291 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
59 ltdivmul 12170 . . . . . . . 8 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6025, 58, 26, 29, 59syl112anc 1374 . . . . . . 7 (𝜑 → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6157, 60mpbird 257 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) < 1)
6254, 61eqbrtrd 5188 . . . . 5 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1)
6336geomulcvg 15924 . . . . 5 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ ∧ (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6451, 62, 63syl2anc 583 . . . 4 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6564adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
66 1red 11291 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 1 ∈ ℝ)
6741ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑋):ℕ0⟶ℂ)
68 eluznn0 12982 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
6916, 68sylan 579 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
7067, 69ffvelcdmd 7119 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
7170abscld 15485 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
7232adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
7372, 69reexpcld 14213 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) ∈ ℝ)
7469nn0red 12614 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℝ)
7569nn0ge0d 12616 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ 𝑚)
7611ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝐴:ℕ0⟶ℂ)
7776, 69ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐴𝑚) ∈ ℂ)
785ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑌 ∈ ℂ)
7978, 69expcld 14196 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑌𝑚) ∈ ℂ)
8077, 79mulcld 11310 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑌𝑚)) ∈ ℂ)
8180abscld 15485 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ)
82 1red 11291 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
8319ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
8483abscld 15485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℝ)
8584, 69reexpcld 14213 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℝ)
8683absge0d 15493 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘𝑋))
8784, 69, 86expge0d 14214 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑚))
88 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
89 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
90 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑌𝑘) = (𝑌𝑚))
9189, 90oveq12d 7466 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐴𝑘) · (𝑌𝑘)) = ((𝐴𝑚) · (𝑌𝑚)))
9291fveq2d 6924 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐴𝑘) · (𝑌𝑘))) = (abs‘((𝐴𝑚) · (𝑌𝑚))))
9392breq1d 5176 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ↔ (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1))
9493rspccva 3634 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
9588, 94sylan 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
96 1re 11290 . . . . . . . . . . . 12 1 ∈ ℝ
97 ltle 11378 . . . . . . . . . . . 12 (((abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9881, 96, 97sylancl 585 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9995, 98mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1)
10081, 82, 85, 87, 99lemul1ad 12234 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) ≤ (1 · ((abs‘𝑋)↑𝑚)))
10183, 69expcld 14196 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑋𝑚) ∈ ℂ)
10277, 101mulcld 11310 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑋𝑚)) ∈ ℂ)
103102, 79absmuld 15503 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))))
10480, 101absmuld 15503 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))))
10577, 79, 101mul32d 11500 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚)) = (((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚)))
106105fveq2d 6924 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))))
10783, 69absexpd 15501 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑚)) = ((abs‘𝑋)↑𝑚))
108107oveq2d 7464 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
109104, 106, 1083eqtr3d 2788 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
11078, 69absexpd 15501 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑌𝑚)) = ((abs‘𝑌)↑𝑚))
111110oveq2d 7464 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
112103, 109, 1113eqtr3d 2788 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
11385recnd 11318 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℂ)
114113mullidd 11308 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((abs‘𝑋)↑𝑚)) = ((abs‘𝑋)↑𝑚))
115100, 112, 1143brtr3d 5197 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚))
116102abscld 15485 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ)
11723adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℝ)
118117, 69reexpcld 14213 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑌)↑𝑚) ∈ ℝ)
119 eluzelz 12913 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
120119adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℤ)
12129ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < (abs‘𝑌))
122 expgt0 14146 . . . . . . . . . 10 (((abs‘𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < (abs‘𝑌)) → 0 < ((abs‘𝑌)↑𝑚))
123117, 120, 121, 122syl3anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < ((abs‘𝑌)↑𝑚))
124 lemuldiv 12175 . . . . . . . . 9 (((abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ ∧ ((abs‘𝑋)↑𝑚) ∈ ℝ ∧ (((abs‘𝑌)↑𝑚) ∈ ℝ ∧ 0 < ((abs‘𝑌)↑𝑚))) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
125116, 85, 118, 123, 124syl112anc 1374 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
126115, 125mpbid 232 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
1276pserval2 26472 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
12883, 69, 127syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
129128fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐴𝑚) · (𝑋𝑚))))
13021recnd 11318 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℂ)
131130adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℂ)
13223recnd 11318 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℂ)
133132adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℂ)
13430ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ≠ 0)
135131, 133, 134, 69expdivd 14210 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) = (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
136126, 129, 1353brtr4d 5198 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ≤ (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
13771, 73, 74, 75, 136lemul2ad 12235 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ≤ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
13874, 71remulcld 11320 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
13970absge0d 15493 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑚)))
14074, 71, 75, 139mulge0d 11867 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
141138, 140absidd 15471 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14274, 73remulcld 11320 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℝ)
143142recnd 11318 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℂ)
144143mullidd 11308 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
145137, 141, 1443brtr4d 5198 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) ≤ (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
146 ovex 7481 . . . . . 6 (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V
14745fvmpt2 7040 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14869, 146, 147sylancl 585 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
149148fveq2d 6924 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) = (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))))
150 id 22 . . . . . . . 8 (𝑖 = 𝑚𝑖 = 𝑚)
151 oveq2 7456 . . . . . . . 8 (𝑖 = 𝑚 → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) = (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
152150, 151oveq12d 7466 . . . . . . 7 (𝑖 = 𝑚 → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
153 ovex 7481 . . . . . . 7 (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ V
154152, 36, 153fvmpt 7029 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
15569, 154syl 17 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
156155oveq2d 7464 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)) = (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
157145, 149, 1563brtr4d 5198 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) ≤ (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)))
1581, 16, 38, 49, 65, 66, 157cvgcmpce 15866 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , 𝐻) ∈ dom ⇝ )
15915, 158rexlimddv 3167 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  0cn0 12553  cz 12639  cuz 12903  +crp 13057  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  radcnvlem2  26475  radcnvlt1  26479
  Copyright terms: Public domain W3C validator