MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem1 Structured version   Visualization version   GIF version

Theorem radcnvlem1 26356
Description: Lemma for radcnvlt1 26361, radcnvle 26363. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
radcnvlem1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlem1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝐺   𝑚,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12813 . . 3 0 = (ℤ‘0)
2 0zd 12519 . . 3 (𝜑 → 0 ∈ ℤ)
3 1rp 12933 . . . 4 1 ∈ ℝ+
43a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
5 radcnvlem2.y . . . 4 (𝜑𝑌 ∈ ℂ)
6 pser.g . . . . 5 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
76pserval2 26354 . . . 4 ((𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
85, 7sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
9 fvexd 6855 . . . 4 (𝜑 → (𝐺𝑌) ∈ V)
10 radcnvlem2.c . . . 4 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
11 radcnv.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
126, 11, 5psergf 26355 . . . . 5 (𝜑 → (𝐺𝑌):ℕ0⟶ℂ)
1312ffvelcdmda 7038 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) ∈ ℂ)
141, 2, 9, 10, 13serf0 15624 . . 3 (𝜑 → (𝐺𝑌) ⇝ 0)
151, 2, 4, 8, 14climi0 15455 . 2 (𝜑 → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
16 simprl 770 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑗 ∈ ℕ0)
17 nn0re 12429 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1817adantl 481 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
19 psergf.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
2019adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑋 ∈ ℂ)
2120abscld 15382 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℝ)
225adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑌 ∈ ℂ)
2322abscld 15382 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℝ)
24 0red 11155 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2519abscld 15382 . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) ∈ ℝ)
265abscld 15382 . . . . . . . . . . 11 (𝜑 → (abs‘𝑌) ∈ ℝ)
2719absge0d 15390 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝑋))
28 radcnvlem2.a . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
2924, 25, 26, 27, 28lelttrd 11310 . . . . . . . . . 10 (𝜑 → 0 < (abs‘𝑌))
3029gt0ne0d 11720 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ≠ 0)
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ≠ 0)
3221, 23, 31redivcld 11988 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
33 reexpcl 14021 . . . . . . 7 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3432, 33sylan 580 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3518, 34remulcld 11182 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) ∈ ℝ)
36 eqid 2729 . . . . 5 (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))
3735, 36fmptd 7068 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))):ℕ0⟶ℝ)
3837ffvelcdmda 7038 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) ∈ ℝ)
39 nn0re 12429 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
4039adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
416, 11, 19psergf 26355 . . . . . . . . . 10 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
4241ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
4342abscld 15382 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
4440, 43remulcld 11182 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
45 radcnvlem1.h . . . . . . 7 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
4644, 45fmptd 7068 . . . . . 6 (𝜑𝐻:ℕ0⟶ℝ)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝐻:ℕ0⟶ℝ)
4847ffvelcdmda 7038 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℝ)
4948recnd 11180 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℂ)
5025, 26, 30redivcld 11988 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
5150recnd 11180 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ)
52 divge0 12030 . . . . . . . 8 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋)) ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5325, 27, 26, 29, 52syl22anc 838 . . . . . . 7 (𝜑 → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5450, 53absidd 15366 . . . . . 6 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) = ((abs‘𝑋) / (abs‘𝑌)))
5526recnd 11180 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ∈ ℂ)
5655mulridd 11169 . . . . . . . 8 (𝜑 → ((abs‘𝑌) · 1) = (abs‘𝑌))
5728, 56breqtrrd 5130 . . . . . . 7 (𝜑 → (abs‘𝑋) < ((abs‘𝑌) · 1))
58 1red 11153 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
59 ltdivmul 12036 . . . . . . . 8 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6025, 58, 26, 29, 59syl112anc 1376 . . . . . . 7 (𝜑 → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6157, 60mpbird 257 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) < 1)
6254, 61eqbrtrd 5124 . . . . 5 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1)
6336geomulcvg 15819 . . . . 5 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ ∧ (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6451, 62, 63syl2anc 584 . . . 4 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6564adantr 480 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
66 1red 11153 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 1 ∈ ℝ)
6741ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑋):ℕ0⟶ℂ)
68 eluznn0 12854 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
6916, 68sylan 580 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
7067, 69ffvelcdmd 7039 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
7170abscld 15382 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
7232adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
7372, 69reexpcld 14106 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) ∈ ℝ)
7469nn0red 12482 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℝ)
7569nn0ge0d 12484 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ 𝑚)
7611ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝐴:ℕ0⟶ℂ)
7776, 69ffvelcdmd 7039 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐴𝑚) ∈ ℂ)
785ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑌 ∈ ℂ)
7978, 69expcld 14089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑌𝑚) ∈ ℂ)
8077, 79mulcld 11172 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑌𝑚)) ∈ ℂ)
8180abscld 15382 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ)
82 1red 11153 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
8319ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
8483abscld 15382 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℝ)
8584, 69reexpcld 14106 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℝ)
8683absge0d 15390 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘𝑋))
8784, 69, 86expge0d 14107 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑚))
88 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
89 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
90 oveq2 7377 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑌𝑘) = (𝑌𝑚))
9189, 90oveq12d 7387 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐴𝑘) · (𝑌𝑘)) = ((𝐴𝑚) · (𝑌𝑚)))
9291fveq2d 6844 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐴𝑘) · (𝑌𝑘))) = (abs‘((𝐴𝑚) · (𝑌𝑚))))
9392breq1d 5112 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ↔ (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1))
9493rspccva 3584 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
9588, 94sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
96 1re 11152 . . . . . . . . . . . 12 1 ∈ ℝ
97 ltle 11240 . . . . . . . . . . . 12 (((abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9881, 96, 97sylancl 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9995, 98mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1)
10081, 82, 85, 87, 99lemul1ad 12100 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) ≤ (1 · ((abs‘𝑋)↑𝑚)))
10183, 69expcld 14089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑋𝑚) ∈ ℂ)
10277, 101mulcld 11172 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑋𝑚)) ∈ ℂ)
103102, 79absmuld 15400 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))))
10480, 101absmuld 15400 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))))
10577, 79, 101mul32d 11362 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚)) = (((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚)))
106105fveq2d 6844 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))))
10783, 69absexpd 15398 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑚)) = ((abs‘𝑋)↑𝑚))
108107oveq2d 7385 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
109104, 106, 1083eqtr3d 2772 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
11078, 69absexpd 15398 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑌𝑚)) = ((abs‘𝑌)↑𝑚))
111110oveq2d 7385 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
112103, 109, 1113eqtr3d 2772 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
11385recnd 11180 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℂ)
114113mullidd 11170 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((abs‘𝑋)↑𝑚)) = ((abs‘𝑋)↑𝑚))
115100, 112, 1143brtr3d 5133 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚))
116102abscld 15382 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ)
11723adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℝ)
118117, 69reexpcld 14106 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑌)↑𝑚) ∈ ℝ)
119 eluzelz 12781 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
120119adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℤ)
12129ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < (abs‘𝑌))
122 expgt0 14038 . . . . . . . . . 10 (((abs‘𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < (abs‘𝑌)) → 0 < ((abs‘𝑌)↑𝑚))
123117, 120, 121, 122syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < ((abs‘𝑌)↑𝑚))
124 lemuldiv 12041 . . . . . . . . 9 (((abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ ∧ ((abs‘𝑋)↑𝑚) ∈ ℝ ∧ (((abs‘𝑌)↑𝑚) ∈ ℝ ∧ 0 < ((abs‘𝑌)↑𝑚))) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
125116, 85, 118, 123, 124syl112anc 1376 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
126115, 125mpbid 232 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
1276pserval2 26354 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
12883, 69, 127syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
129128fveq2d 6844 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐴𝑚) · (𝑋𝑚))))
13021recnd 11180 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℂ)
131130adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℂ)
13223recnd 11180 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℂ)
133132adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℂ)
13430ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ≠ 0)
135131, 133, 134, 69expdivd 14103 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) = (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
136126, 129, 1353brtr4d 5134 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ≤ (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
13771, 73, 74, 75, 136lemul2ad 12101 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ≤ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
13874, 71remulcld 11182 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
13970absge0d 15390 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑚)))
14074, 71, 75, 139mulge0d 11733 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
141138, 140absidd 15366 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14274, 73remulcld 11182 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℝ)
143142recnd 11180 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℂ)
144143mullidd 11170 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
145137, 141, 1443brtr4d 5134 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) ≤ (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
146 ovex 7402 . . . . . 6 (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V
14745fvmpt2 6961 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14869, 146, 147sylancl 586 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
149148fveq2d 6844 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) = (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))))
150 id 22 . . . . . . . 8 (𝑖 = 𝑚𝑖 = 𝑚)
151 oveq2 7377 . . . . . . . 8 (𝑖 = 𝑚 → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) = (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
152150, 151oveq12d 7387 . . . . . . 7 (𝑖 = 𝑚 → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
153 ovex 7402 . . . . . . 7 (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ V
154152, 36, 153fvmpt 6950 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
15569, 154syl 17 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
156155oveq2d 7385 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)) = (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
157145, 149, 1563brtr4d 5134 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) ≤ (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)))
1581, 16, 38, 49, 65, 66, 157cvgcmpce 15761 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , 𝐻) ∈ dom ⇝ )
15915, 158rexlimddv 3140 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051   < clt 11186  cle 11187   / cdiv 11813  0cn0 12420  cz 12507  cuz 12771  +crp 12929  seqcseq 13944  cexp 14004  abscabs 15177  cli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-ico 13290  df-fz 13447  df-fzo 13594  df-fl 13732  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630
This theorem is referenced by:  radcnvlem2  26357  radcnvlt1  26361
  Copyright terms: Public domain W3C validator