Step | Hyp | Ref
| Expression |
1 | | nn0uz 12313 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 12025 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
3 | | 1rp 12427 |
. . . 4
⊢ 1 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → 1 ∈
ℝ+) |
5 | | radcnvlem2.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℂ) |
6 | | pser.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
7 | 6 | pserval2 25098 |
. . . 4
⊢ ((𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑌)‘𝑘) = ((𝐴‘𝑘) · (𝑌↑𝑘))) |
8 | 5, 7 | sylan 584 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑌)‘𝑘) = ((𝐴‘𝑘) · (𝑌↑𝑘))) |
9 | | fvexd 6674 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑌) ∈ V) |
10 | | radcnvlem2.c |
. . . 4
⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) |
11 | | radcnv.a |
. . . . . 6
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
12 | 6, 11, 5 | psergf 25099 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑌):ℕ0⟶ℂ) |
13 | 12 | ffvelrnda 6843 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑌)‘𝑘) ∈ ℂ) |
14 | 1, 2, 9, 10, 13 | serf0 15078 |
. . 3
⊢ (𝜑 → (𝐺‘𝑌) ⇝ 0) |
15 | 1, 2, 4, 8, 14 | climi0 14910 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1) |
16 | | simprl 771 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → 𝑗 ∈ ℕ0) |
17 | | nn0re 11936 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
18 | 17 | adantl 486 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℝ) |
19 | | psergf.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℂ) |
20 | 19 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → 𝑋 ∈ ℂ) |
21 | 20 | abscld 14837 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (abs‘𝑋) ∈
ℝ) |
22 | 5 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → 𝑌 ∈ ℂ) |
23 | 22 | abscld 14837 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (abs‘𝑌) ∈
ℝ) |
24 | | 0red 10675 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
25 | 19 | abscld 14837 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ) |
26 | 5 | abscld 14837 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝑌) ∈
ℝ) |
27 | 19 | absge0d 14845 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ (abs‘𝑋)) |
28 | | radcnvlem2.a |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) |
29 | 24, 25, 26, 27, 28 | lelttrd 10829 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (abs‘𝑌)) |
30 | 29 | gt0ne0d 11235 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝑌) ≠ 0) |
31 | 30 | adantr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (abs‘𝑌) ≠ 0) |
32 | 21, 23, 31 | redivcld 11499 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ) |
33 | | reexpcl 13489 |
. . . . . . 7
⊢
((((abs‘𝑋) /
(abs‘𝑌)) ∈
ℝ ∧ 𝑖 ∈
ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ) |
34 | 32, 33 | sylan 584 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) →
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖) ∈
ℝ) |
35 | 18, 34 | remulcld 10702 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) ∈ ℝ) |
36 | | eqid 2759 |
. . . . 5
⊢ (𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))) |
37 | 35, 36 | fmptd 6870 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))):ℕ0⟶ℝ) |
38 | 37 | ffvelrnda 6843 |
. . 3
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖)))‘𝑚) ∈ ℝ) |
39 | | nn0re 11936 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
40 | 39 | adantl 486 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℝ) |
41 | 6, 11, 19 | psergf 25099 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) |
42 | 41 | ffvelrnda 6843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑚) ∈ ℂ) |
43 | 42 | abscld 14837 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘((𝐺‘𝑋)‘𝑚)) ∈ ℝ) |
44 | 40, 43 | remulcld 10702 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) ∈ ℝ) |
45 | | radcnvlem1.h |
. . . . . . 7
⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
46 | 44, 45 | fmptd 6870 |
. . . . . 6
⊢ (𝜑 → 𝐻:ℕ0⟶ℝ) |
47 | 46 | adantr 485 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → 𝐻:ℕ0⟶ℝ) |
48 | 47 | ffvelrnda 6843 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻‘𝑚) ∈ ℝ) |
49 | 48 | recnd 10700 |
. . 3
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻‘𝑚) ∈ ℂ) |
50 | 25, 26, 30 | redivcld 11499 |
. . . . . 6
⊢ (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ) |
51 | 50 | recnd 10700 |
. . . . 5
⊢ (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ) |
52 | | divge0 11540 |
. . . . . . . 8
⊢
((((abs‘𝑋)
∈ ℝ ∧ 0 ≤ (abs‘𝑋)) ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 <
(abs‘𝑌))) → 0
≤ ((abs‘𝑋) /
(abs‘𝑌))) |
53 | 25, 27, 26, 29, 52 | syl22anc 838 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ ((abs‘𝑋) / (abs‘𝑌))) |
54 | 50, 53 | absidd 14823 |
. . . . . 6
⊢ (𝜑 →
(abs‘((abs‘𝑋) /
(abs‘𝑌))) =
((abs‘𝑋) /
(abs‘𝑌))) |
55 | 26 | recnd 10700 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝑌) ∈
ℂ) |
56 | 55 | mulid1d 10689 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝑌) · 1) = (abs‘𝑌)) |
57 | 28, 56 | breqtrrd 5061 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝑋) < ((abs‘𝑌) · 1)) |
58 | | 1red 10673 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
59 | | ltdivmul 11546 |
. . . . . . . 8
⊢
(((abs‘𝑋)
∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 <
(abs‘𝑌))) →
(((abs‘𝑋) /
(abs‘𝑌)) < 1
↔ (abs‘𝑋) <
((abs‘𝑌) ·
1))) |
60 | 25, 58, 26, 29, 59 | syl112anc 1372 |
. . . . . . 7
⊢ (𝜑 → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1))) |
61 | 57, 60 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) < 1) |
62 | 54, 61 | eqbrtrd 5055 |
. . . . 5
⊢ (𝜑 →
(abs‘((abs‘𝑋) /
(abs‘𝑌))) <
1) |
63 | 36 | geomulcvg 15273 |
. . . . 5
⊢
((((abs‘𝑋) /
(abs‘𝑌)) ∈
ℂ ∧ (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1) → seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖)))) ∈ dom ⇝
) |
64 | 51, 62, 63 | syl2anc 588 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖)))) ∈ dom ⇝
) |
65 | 64 | adantr 485 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → seq0( + , (𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖)))) ∈ dom ⇝
) |
66 | | 1red 10673 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → 1 ∈
ℝ) |
67 | 41 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐺‘𝑋):ℕ0⟶ℂ) |
68 | | eluznn0 12350 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑗)) → 𝑚 ∈ ℕ0) |
69 | 16, 68 | sylan 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℕ0) |
70 | 67, 69 | ffvelrnd 6844 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝐺‘𝑋)‘𝑚) ∈ ℂ) |
71 | 70 | abscld 14837 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐺‘𝑋)‘𝑚)) ∈ ℝ) |
72 | 32 | adantr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ) |
73 | 72, 69 | reexpcld 13570 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) ∈ ℝ) |
74 | 69 | nn0red 11988 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℝ) |
75 | 69 | nn0ge0d 11990 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 ≤ 𝑚) |
76 | 11 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝐴:ℕ0⟶ℂ) |
77 | 76, 69 | ffvelrnd 6844 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐴‘𝑚) ∈ ℂ) |
78 | 5 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑌 ∈ ℂ) |
79 | 78, 69 | expcld 13553 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑌↑𝑚) ∈ ℂ) |
80 | 77, 79 | mulcld 10692 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝐴‘𝑚) · (𝑌↑𝑚)) ∈ ℂ) |
81 | 80 | abscld 14837 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) ∈ ℝ) |
82 | | 1red 10673 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 1 ∈
ℝ) |
83 | 19 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑋 ∈ ℂ) |
84 | 83 | abscld 14837 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘𝑋) ∈
ℝ) |
85 | 84, 69 | reexpcld 13570 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℝ) |
86 | 83 | absge0d 14845 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 ≤
(abs‘𝑋)) |
87 | 84, 69, 86 | expge0d 13571 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 ≤
((abs‘𝑋)↑𝑚)) |
88 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1) |
89 | | fveq2 6659 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝐴‘𝑘) = (𝐴‘𝑚)) |
90 | | oveq2 7159 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝑌↑𝑘) = (𝑌↑𝑚)) |
91 | 89, 90 | oveq12d 7169 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((𝐴‘𝑘) · (𝑌↑𝑘)) = ((𝐴‘𝑚) · (𝑌↑𝑚))) |
92 | 91 | fveq2d 6663 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) = (abs‘((𝐴‘𝑚) · (𝑌↑𝑚)))) |
93 | 92 | breq1d 5043 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ((abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1 ↔ (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) < 1)) |
94 | 93 | rspccva 3541 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1 ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) < 1) |
95 | 88, 94 | sylan 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) < 1) |
96 | | 1re 10672 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
97 | | ltle 10760 |
. . . . . . . . . . . 12
⊢
(((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) < 1 → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) ≤ 1)) |
98 | 81, 96, 97 | sylancl 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) < 1 → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) ≤ 1)) |
99 | 95, 98 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) ≤ 1) |
100 | 81, 82, 85, 87, 99 | lemul1ad 11610 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · ((abs‘𝑋)↑𝑚)) ≤ (1 · ((abs‘𝑋)↑𝑚))) |
101 | 83, 69 | expcld 13553 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑋↑𝑚) ∈ ℂ) |
102 | 77, 101 | mulcld 10692 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝐴‘𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
103 | 102, 79 | absmuld 14855 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝐴‘𝑚) · (𝑋↑𝑚)) · (𝑌↑𝑚))) = ((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · (abs‘(𝑌↑𝑚)))) |
104 | 80, 101 | absmuld 14855 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝐴‘𝑚) · (𝑌↑𝑚)) · (𝑋↑𝑚))) = ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · (abs‘(𝑋↑𝑚)))) |
105 | 77, 79, 101 | mul32d 10881 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (((𝐴‘𝑚) · (𝑌↑𝑚)) · (𝑋↑𝑚)) = (((𝐴‘𝑚) · (𝑋↑𝑚)) · (𝑌↑𝑚))) |
106 | 105 | fveq2d 6663 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝐴‘𝑚) · (𝑌↑𝑚)) · (𝑋↑𝑚))) = (abs‘(((𝐴‘𝑚) · (𝑋↑𝑚)) · (𝑌↑𝑚)))) |
107 | 83, 69 | absexpd 14853 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑋↑𝑚)) = ((abs‘𝑋)↑𝑚)) |
108 | 107 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · (abs‘(𝑋↑𝑚))) = ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · ((abs‘𝑋)↑𝑚))) |
109 | 104, 106,
108 | 3eqtr3d 2802 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝐴‘𝑚) · (𝑋↑𝑚)) · (𝑌↑𝑚))) = ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · ((abs‘𝑋)↑𝑚))) |
110 | 78, 69 | absexpd 14853 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑌↑𝑚)) = ((abs‘𝑌)↑𝑚)) |
111 | 110 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · (abs‘(𝑌↑𝑚))) = ((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · ((abs‘𝑌)↑𝑚))) |
112 | 103, 109,
111 | 3eqtr3d 2802 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑌↑𝑚))) · ((abs‘𝑋)↑𝑚)) = ((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · ((abs‘𝑌)↑𝑚))) |
113 | 85 | recnd 10700 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℂ) |
114 | 113 | mulid2d 10690 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (1 ·
((abs‘𝑋)↑𝑚)) = ((abs‘𝑋)↑𝑚)) |
115 | 100, 112,
114 | 3brtr3d 5064 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚)) |
116 | 102 | abscld 14837 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ ℝ) |
117 | 23 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘𝑌) ∈
ℝ) |
118 | 117, 69 | reexpcld 13570 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((abs‘𝑌)↑𝑚) ∈ ℝ) |
119 | | eluzelz 12285 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) |
120 | 119 | adantl 486 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℤ) |
121 | 29 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 <
(abs‘𝑌)) |
122 | | expgt0 13505 |
. . . . . . . . . 10
⊢
(((abs‘𝑌)
∈ ℝ ∧ 𝑚
∈ ℤ ∧ 0 < (abs‘𝑌)) → 0 < ((abs‘𝑌)↑𝑚)) |
123 | 117, 120,
121, 122 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 <
((abs‘𝑌)↑𝑚)) |
124 | | lemuldiv 11551 |
. . . . . . . . 9
⊢
(((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) ∈ ℝ ∧ ((abs‘𝑋)↑𝑚) ∈ ℝ ∧ (((abs‘𝑌)↑𝑚) ∈ ℝ ∧ 0 <
((abs‘𝑌)↑𝑚))) → (((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))) |
125 | 116, 85, 118, 123, 124 | syl112anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (((abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))) |
126 | 115, 125 | mpbid 235 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐴‘𝑚) · (𝑋↑𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))) |
127 | 6 | pserval2 25098 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0)
→ ((𝐺‘𝑋)‘𝑚) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
128 | 83, 69, 127 | syl2anc 588 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝐺‘𝑋)‘𝑚) = ((𝐴‘𝑚) · (𝑋↑𝑚))) |
129 | 128 | fveq2d 6663 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐺‘𝑋)‘𝑚)) = (abs‘((𝐴‘𝑚) · (𝑋↑𝑚)))) |
130 | 21 | recnd 10700 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (abs‘𝑋) ∈
ℂ) |
131 | 130 | adantr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘𝑋) ∈
ℂ) |
132 | 23 | recnd 10700 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → (abs‘𝑌) ∈
ℂ) |
133 | 132 | adantr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘𝑌) ∈
ℂ) |
134 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘𝑌) ≠ 0) |
135 | 131, 133,
134, 69 | expdivd 13567 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) = (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))) |
136 | 126, 129,
135 | 3brtr4d 5065 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐺‘𝑋)‘𝑚)) ≤ (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) |
137 | 71, 73, 74, 75, 136 | lemul2ad 11611 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) ≤ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) |
138 | 74, 71 | remulcld 10702 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) ∈ ℝ) |
139 | 70 | absge0d 14845 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 ≤
(abs‘((𝐺‘𝑋)‘𝑚))) |
140 | 74, 71, 75, 139 | mulge0d 11248 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
141 | 138, 140 | absidd 14823 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) = (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
142 | 74, 73 | remulcld 10702 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℝ) |
143 | 142 | recnd 10700 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℂ) |
144 | 143 | mulid2d 10690 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) |
145 | 137, 141,
144 | 3brtr4d 5065 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ≤ (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))) |
146 | | ovex 7184 |
. . . . . 6
⊢ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))) ∈ V |
147 | 45 | fvmpt2 6771 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑚 ·
(abs‘((𝐺‘𝑋)‘𝑚))) ∈ V) → (𝐻‘𝑚) = (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
148 | 69, 146, 147 | sylancl 590 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐻‘𝑚) = (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
149 | 148 | fveq2d 6663 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐻‘𝑚)) = (abs‘(𝑚 · (abs‘((𝐺‘𝑋)‘𝑚))))) |
150 | | id 22 |
. . . . . . . 8
⊢ (𝑖 = 𝑚 → 𝑖 = 𝑚) |
151 | | oveq2 7159 |
. . . . . . . 8
⊢ (𝑖 = 𝑚 → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) = (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) |
152 | 150, 151 | oveq12d 7169 |
. . . . . . 7
⊢ (𝑖 = 𝑚 → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) |
153 | | ovex 7184 |
. . . . . . 7
⊢ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ V |
154 | 152, 36, 153 | fvmpt 6760 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ ((𝑖 ∈
ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) |
155 | 69, 154 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) |
156 | 155 | oveq2d 7167 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (1 · ((𝑖 ∈ ℕ0
↦ (𝑖 ·
(((abs‘𝑋) /
(abs‘𝑌))↑𝑖)))‘𝑚)) = (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))) |
157 | 145, 149,
156 | 3brtr4d 5065 |
. . 3
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐻‘𝑚)) ≤ (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚))) |
158 | 1, 16, 38, 49, 65, 66, 157 | cvgcmpce 15214 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧
∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘((𝐴‘𝑘) · (𝑌↑𝑘))) < 1)) → seq0( + , 𝐻) ∈ dom ⇝
) |
159 | 15, 158 | rexlimddv 3216 |
1
⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝
) |