MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem1 Structured version   Visualization version   GIF version

Theorem radcnvlem1 25572
Description: Lemma for radcnvlt1 25577, radcnvle 25579. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
radcnvlem1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlem1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝐺   𝑚,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12620 . . 3 0 = (ℤ‘0)
2 0zd 12331 . . 3 (𝜑 → 0 ∈ ℤ)
3 1rp 12734 . . . 4 1 ∈ ℝ+
43a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
5 radcnvlem2.y . . . 4 (𝜑𝑌 ∈ ℂ)
6 pser.g . . . . 5 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
76pserval2 25570 . . . 4 ((𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
85, 7sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
9 fvexd 6789 . . . 4 (𝜑 → (𝐺𝑌) ∈ V)
10 radcnvlem2.c . . . 4 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
11 radcnv.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
126, 11, 5psergf 25571 . . . . 5 (𝜑 → (𝐺𝑌):ℕ0⟶ℂ)
1312ffvelrnda 6961 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) ∈ ℂ)
141, 2, 9, 10, 13serf0 15392 . . 3 (𝜑 → (𝐺𝑌) ⇝ 0)
151, 2, 4, 8, 14climi0 15221 . 2 (𝜑 → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
16 simprl 768 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑗 ∈ ℕ0)
17 nn0re 12242 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1817adantl 482 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
19 psergf.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
2019adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑋 ∈ ℂ)
2120abscld 15148 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℝ)
225adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑌 ∈ ℂ)
2322abscld 15148 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℝ)
24 0red 10978 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2519abscld 15148 . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) ∈ ℝ)
265abscld 15148 . . . . . . . . . . 11 (𝜑 → (abs‘𝑌) ∈ ℝ)
2719absge0d 15156 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝑋))
28 radcnvlem2.a . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
2924, 25, 26, 27, 28lelttrd 11133 . . . . . . . . . 10 (𝜑 → 0 < (abs‘𝑌))
3029gt0ne0d 11539 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ≠ 0)
3130adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ≠ 0)
3221, 23, 31redivcld 11803 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
33 reexpcl 13799 . . . . . . 7 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3432, 33sylan 580 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3518, 34remulcld 11005 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) ∈ ℝ)
36 eqid 2738 . . . . 5 (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))
3735, 36fmptd 6988 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))):ℕ0⟶ℝ)
3837ffvelrnda 6961 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) ∈ ℝ)
39 nn0re 12242 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
4039adantl 482 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
416, 11, 19psergf 25571 . . . . . . . . . 10 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
4241ffvelrnda 6961 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
4342abscld 15148 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
4440, 43remulcld 11005 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
45 radcnvlem1.h . . . . . . 7 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
4644, 45fmptd 6988 . . . . . 6 (𝜑𝐻:ℕ0⟶ℝ)
4746adantr 481 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝐻:ℕ0⟶ℝ)
4847ffvelrnda 6961 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℝ)
4948recnd 11003 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℂ)
5025, 26, 30redivcld 11803 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
5150recnd 11003 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ)
52 divge0 11844 . . . . . . . 8 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋)) ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5325, 27, 26, 29, 52syl22anc 836 . . . . . . 7 (𝜑 → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5450, 53absidd 15134 . . . . . 6 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) = ((abs‘𝑋) / (abs‘𝑌)))
5526recnd 11003 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ∈ ℂ)
5655mulid1d 10992 . . . . . . . 8 (𝜑 → ((abs‘𝑌) · 1) = (abs‘𝑌))
5728, 56breqtrrd 5102 . . . . . . 7 (𝜑 → (abs‘𝑋) < ((abs‘𝑌) · 1))
58 1red 10976 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
59 ltdivmul 11850 . . . . . . . 8 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6025, 58, 26, 29, 59syl112anc 1373 . . . . . . 7 (𝜑 → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6157, 60mpbird 256 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) < 1)
6254, 61eqbrtrd 5096 . . . . 5 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1)
6336geomulcvg 15588 . . . . 5 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ ∧ (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6451, 62, 63syl2anc 584 . . . 4 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6564adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
66 1red 10976 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 1 ∈ ℝ)
6741ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑋):ℕ0⟶ℂ)
68 eluznn0 12657 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
6916, 68sylan 580 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
7067, 69ffvelrnd 6962 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
7170abscld 15148 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
7232adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
7372, 69reexpcld 13881 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) ∈ ℝ)
7469nn0red 12294 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℝ)
7569nn0ge0d 12296 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ 𝑚)
7611ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝐴:ℕ0⟶ℂ)
7776, 69ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐴𝑚) ∈ ℂ)
785ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑌 ∈ ℂ)
7978, 69expcld 13864 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑌𝑚) ∈ ℂ)
8077, 79mulcld 10995 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑌𝑚)) ∈ ℂ)
8180abscld 15148 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ)
82 1red 10976 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
8319ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
8483abscld 15148 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℝ)
8584, 69reexpcld 13881 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℝ)
8683absge0d 15156 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘𝑋))
8784, 69, 86expge0d 13882 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑚))
88 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
89 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
90 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑌𝑘) = (𝑌𝑚))
9189, 90oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐴𝑘) · (𝑌𝑘)) = ((𝐴𝑚) · (𝑌𝑚)))
9291fveq2d 6778 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐴𝑘) · (𝑌𝑘))) = (abs‘((𝐴𝑚) · (𝑌𝑚))))
9392breq1d 5084 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ↔ (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1))
9493rspccva 3560 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
9588, 94sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
96 1re 10975 . . . . . . . . . . . 12 1 ∈ ℝ
97 ltle 11063 . . . . . . . . . . . 12 (((abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9881, 96, 97sylancl 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9995, 98mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1)
10081, 82, 85, 87, 99lemul1ad 11914 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) ≤ (1 · ((abs‘𝑋)↑𝑚)))
10183, 69expcld 13864 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑋𝑚) ∈ ℂ)
10277, 101mulcld 10995 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑋𝑚)) ∈ ℂ)
103102, 79absmuld 15166 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))))
10480, 101absmuld 15166 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))))
10577, 79, 101mul32d 11185 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚)) = (((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚)))
106105fveq2d 6778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))))
10783, 69absexpd 15164 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑚)) = ((abs‘𝑋)↑𝑚))
108107oveq2d 7291 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
109104, 106, 1083eqtr3d 2786 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
11078, 69absexpd 15164 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑌𝑚)) = ((abs‘𝑌)↑𝑚))
111110oveq2d 7291 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
112103, 109, 1113eqtr3d 2786 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
11385recnd 11003 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℂ)
114113mulid2d 10993 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((abs‘𝑋)↑𝑚)) = ((abs‘𝑋)↑𝑚))
115100, 112, 1143brtr3d 5105 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚))
116102abscld 15148 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ)
11723adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℝ)
118117, 69reexpcld 13881 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑌)↑𝑚) ∈ ℝ)
119 eluzelz 12592 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
120119adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℤ)
12129ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < (abs‘𝑌))
122 expgt0 13816 . . . . . . . . . 10 (((abs‘𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < (abs‘𝑌)) → 0 < ((abs‘𝑌)↑𝑚))
123117, 120, 121, 122syl3anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < ((abs‘𝑌)↑𝑚))
124 lemuldiv 11855 . . . . . . . . 9 (((abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ ∧ ((abs‘𝑋)↑𝑚) ∈ ℝ ∧ (((abs‘𝑌)↑𝑚) ∈ ℝ ∧ 0 < ((abs‘𝑌)↑𝑚))) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
125116, 85, 118, 123, 124syl112anc 1373 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
126115, 125mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
1276pserval2 25570 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
12883, 69, 127syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
129128fveq2d 6778 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐴𝑚) · (𝑋𝑚))))
13021recnd 11003 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℂ)
131130adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℂ)
13223recnd 11003 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℂ)
133132adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℂ)
13430ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ≠ 0)
135131, 133, 134, 69expdivd 13878 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) = (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
136126, 129, 1353brtr4d 5106 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ≤ (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
13771, 73, 74, 75, 136lemul2ad 11915 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ≤ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
13874, 71remulcld 11005 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
13970absge0d 15156 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑚)))
14074, 71, 75, 139mulge0d 11552 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
141138, 140absidd 15134 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14274, 73remulcld 11005 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℝ)
143142recnd 11003 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℂ)
144143mulid2d 10993 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
145137, 141, 1443brtr4d 5106 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) ≤ (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
146 ovex 7308 . . . . . 6 (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V
14745fvmpt2 6886 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14869, 146, 147sylancl 586 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
149148fveq2d 6778 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) = (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))))
150 id 22 . . . . . . . 8 (𝑖 = 𝑚𝑖 = 𝑚)
151 oveq2 7283 . . . . . . . 8 (𝑖 = 𝑚 → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) = (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
152150, 151oveq12d 7293 . . . . . . 7 (𝑖 = 𝑚 → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
153 ovex 7308 . . . . . . 7 (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ V
154152, 36, 153fvmpt 6875 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
15569, 154syl 17 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
156155oveq2d 7291 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)) = (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
157145, 149, 1563brtr4d 5106 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) ≤ (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)))
1581, 16, 38, 49, 65, 66, 157cvgcmpce 15530 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , 𝐻) ∈ dom ⇝ )
15915, 158rexlimddv 3220 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  0cn0 12233  cz 12319  cuz 12582  +crp 12730  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  radcnvlem2  25573  radcnvlt1  25577
  Copyright terms: Public domain W3C validator