![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpmtmip | Structured version Visualization version GIF version |
Description: "Minus times minus is plus", see also nnmtmip 12237, holds for positive reals, too (formalized to "The product of two negative reals is a positive real"). "The reason for this" in this case is that (-๐ด ยท -๐ต) = (๐ด ยท ๐ต) for all complex numbers ๐ด and ๐ต because of mul2neg 11652, ๐ด and ๐ต are complex numbers because of rpcn 12983, and (๐ด ยท ๐ต) โ โ+ because of rpmulcl 12996. Note that the opposites -๐ด and -๐ต of the positive reals ๐ด and ๐ต are negative reals. (Contributed by AV, 23-Dec-2022.) |
Ref | Expression |
---|---|
rpmtmip | โข ((๐ด โ โ+ โง ๐ต โ โ+) โ (-๐ด ยท -๐ต) โ โ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12983 | . . 3 โข (๐ด โ โ+ โ ๐ด โ โ) | |
2 | rpcn 12983 | . . 3 โข (๐ต โ โ+ โ ๐ต โ โ) | |
3 | mul2neg 11652 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ (-๐ด ยท -๐ต) = (๐ด ยท ๐ต)) | |
4 | 1, 2, 3 | syl2an 596 | . 2 โข ((๐ด โ โ+ โง ๐ต โ โ+) โ (-๐ด ยท -๐ต) = (๐ด ยท ๐ต)) |
5 | rpmulcl 12996 | . 2 โข ((๐ด โ โ+ โง ๐ต โ โ+) โ (๐ด ยท ๐ต) โ โ+) | |
6 | 4, 5 | eqeltrd 2833 | 1 โข ((๐ด โ โ+ โง ๐ต โ โ+) โ (-๐ด ยท -๐ต) โ โ+) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 (class class class)co 7408 โcc 11107 ยท cmul 11114 -cneg 11444 โ+crp 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 df-rp 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |