MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdivcl Structured version   Visualization version   GIF version

Theorem rpdivcl 13058
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpdivcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)

Proof of Theorem rpdivcl
StepHypRef Expression
1 rpre 13041 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rprene0 13050 . . 3 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
3 redivcl 11984 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
433expb 1119 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
51, 2, 4syl2an 596 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
6 elrp 13034 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 elrp 13034 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
8 divgt0 12134 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
96, 7, 8syl2anb 598 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵))
10 elrp 13034 . 2 ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
115, 9, 10sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   < clt 11293   / cdiv 11918  +crp 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-rp 13033
This theorem is referenced by:  rpreccl  13059  rphalfcl  13060  rpdivcld  13092  bcrpcl  14344  01sqrexlem7  15284  caurcvgr  15707  isprm5  16741  4sqlem12  16990  sylow1lem1  19631  metss2lem  24540  metss2  24541  minveclem3  25477  ovoliunlem3  25553  vitalilem4  25660  aaliou3lem8  26402  abelthlem8  26498  pigt3  26575  pige3ALT  26577  advlogexp  26712  atan1  26986  log2cnv  27002  cxp2limlem  27034  harmonicbnd4  27069  basellem1  27139  logexprlim  27284  logfacrlim2  27285  bcmono  27336  bposlem1  27343  bposlem7  27349  bposlem9  27351  rplogsumlem1  27543  dchrisumlem3  27550  dchrvmasum2lem  27555  dchrvmasum2if  27556  dchrvmasumlem2  27557  dchrvmasumlem3  27558  dchrvmasumiflem2  27561  dchrisum0lem2a  27576  dchrisum0lem2  27577  mudivsum  27589  mulogsumlem  27590  mulogsum  27591  mulog2sumlem1  27593  mulog2sumlem2  27594  mulog2sumlem3  27595  selberglem1  27604  selberglem2  27605  selberg  27607  selberg3lem1  27616  selbergr  27627  pntpbnd1a  27644  pntibndlem1  27648  pntibndlem3  27651  pntlema  27655  pntlemb  27656  pntlemg  27657  pntlemr  27661  pntlemj  27662  pntlemf  27664  smcnlem  30726  blocnilem  30833  minvecolem3  30905  nmcexi  32055  rpdp2cl  32849  dp2ltc  32854  dpgti  32873  circum  35659  faclim  35726  taupilem1  37304  poimirlem29  37636  mblfinlem3  37646  itg2addnclem2  37659  itg2addnclem3  37660  ftc1anclem7  37686  ftc1anc  37688  heiborlem5  37802  heiborlem7  37804  proot1ex  43185
  Copyright terms: Public domain W3C validator