Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12748 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rprene0 12757 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
3 | redivcl 11704 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
4 | 3 | 3expb 1119 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
6 | elrp 12742 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | elrp 12742 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
8 | divgt0 11853 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
10 | elrp 12742 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5073 (class class class)co 7267 ℝcr 10880 0cc0 10881 < clt 11019 / cdiv 11642 ℝ+crp 12740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-rp 12741 |
This theorem is referenced by: rpreccl 12766 rphalfcl 12767 rpdivcld 12799 bcrpcl 14032 sqrlem7 14970 caurcvgr 15395 isprm5 16422 4sqlem12 16667 sylow1lem1 19213 metss2lem 23677 metss2 23678 minveclem3 24603 ovoliunlem3 24678 vitalilem4 24785 aaliou3lem8 25515 abelthlem8 25608 pigt3 25684 pige3ALT 25686 advlogexp 25820 atan1 26088 log2cnv 26104 cxp2limlem 26135 harmonicbnd4 26170 basellem1 26240 logexprlim 26383 logfacrlim2 26384 bcmono 26435 bposlem1 26442 bposlem7 26448 bposlem9 26450 rplogsumlem1 26642 dchrisumlem3 26649 dchrvmasum2lem 26654 dchrvmasum2if 26655 dchrvmasumlem2 26656 dchrvmasumlem3 26657 dchrvmasumiflem2 26660 dchrisum0lem2a 26675 dchrisum0lem2 26676 mudivsum 26688 mulogsumlem 26689 mulogsum 26690 mulog2sumlem1 26692 mulog2sumlem2 26693 mulog2sumlem3 26694 selberglem1 26703 selberglem2 26704 selberg 26706 selberg3lem1 26715 selbergr 26726 pntpbnd1a 26743 pntibndlem1 26747 pntibndlem3 26750 pntlema 26754 pntlemb 26755 pntlemg 26756 pntlemr 26760 pntlemj 26761 pntlemf 26763 smcnlem 29067 blocnilem 29174 minvecolem3 29246 nmcexi 30396 rpdp2cl 31164 dp2ltc 31169 dpgti 31188 circum 33640 faclim 33720 taupilem1 35500 poimirlem29 35814 mblfinlem3 35824 itg2addnclem2 35837 itg2addnclem3 35838 ftc1anclem7 35864 ftc1anc 35866 heiborlem5 35981 heiborlem7 35983 proot1ex 41034 |
Copyright terms: Public domain | W3C validator |