| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12960 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rprene0 12969 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 3 | redivcl 11901 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | elrp 12953 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | elrp 12953 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 8 | divgt0 12051 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
| 9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
| 10 | elrp 12953 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 < clt 11208 / cdiv 11835 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-rp 12952 |
| This theorem is referenced by: rpreccl 12979 rphalfcl 12980 rpdivcld 13012 bcrpcl 14273 01sqrexlem7 15214 caurcvgr 15640 isprm5 16677 4sqlem12 16927 sylow1lem1 19528 metss2lem 24399 metss2 24400 minveclem3 25329 ovoliunlem3 25405 vitalilem4 25512 aaliou3lem8 26253 abelthlem8 26349 pigt3 26427 pige3ALT 26429 advlogexp 26564 atan1 26838 log2cnv 26854 cxp2limlem 26886 harmonicbnd4 26921 basellem1 26991 logexprlim 27136 logfacrlim2 27137 bcmono 27188 bposlem1 27195 bposlem7 27201 bposlem9 27203 rplogsumlem1 27395 dchrisumlem3 27402 dchrvmasum2lem 27407 dchrvmasum2if 27408 dchrvmasumlem2 27409 dchrvmasumlem3 27410 dchrvmasumiflem2 27413 dchrisum0lem2a 27428 dchrisum0lem2 27429 mudivsum 27441 mulogsumlem 27442 mulogsum 27443 mulog2sumlem1 27445 mulog2sumlem2 27446 mulog2sumlem3 27447 selberglem1 27456 selberglem2 27457 selberg 27459 selberg3lem1 27468 selbergr 27479 pntpbnd1a 27496 pntibndlem1 27500 pntibndlem3 27503 pntlema 27507 pntlemb 27508 pntlemg 27509 pntlemr 27513 pntlemj 27514 pntlemf 27516 smcnlem 30626 blocnilem 30733 minvecolem3 30805 nmcexi 31955 rpdp2cl 32802 dp2ltc 32807 dpgti 32826 circum 35661 faclim 35733 taupilem1 37309 poimirlem29 37643 mblfinlem3 37653 itg2addnclem2 37666 itg2addnclem3 37667 ftc1anclem7 37693 ftc1anc 37695 heiborlem5 37809 heiborlem7 37811 proot1ex 43185 |
| Copyright terms: Public domain | W3C validator |