| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 13022 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rprene0 13031 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 3 | redivcl 11965 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | elrp 13015 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | elrp 13015 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 8 | divgt0 12115 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
| 9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
| 10 | elrp 13015 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 < clt 11274 / cdiv 11899 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-rp 13014 |
| This theorem is referenced by: rpreccl 13040 rphalfcl 13041 rpdivcld 13073 bcrpcl 14331 01sqrexlem7 15272 caurcvgr 15695 isprm5 16731 4sqlem12 16981 sylow1lem1 19584 metss2lem 24455 metss2 24456 minveclem3 25386 ovoliunlem3 25462 vitalilem4 25569 aaliou3lem8 26310 abelthlem8 26406 pigt3 26484 pige3ALT 26486 advlogexp 26621 atan1 26895 log2cnv 26911 cxp2limlem 26943 harmonicbnd4 26978 basellem1 27048 logexprlim 27193 logfacrlim2 27194 bcmono 27245 bposlem1 27252 bposlem7 27258 bposlem9 27260 rplogsumlem1 27452 dchrisumlem3 27459 dchrvmasum2lem 27464 dchrvmasum2if 27465 dchrvmasumlem2 27466 dchrvmasumlem3 27467 dchrvmasumiflem2 27470 dchrisum0lem2a 27485 dchrisum0lem2 27486 mudivsum 27498 mulogsumlem 27499 mulogsum 27500 mulog2sumlem1 27502 mulog2sumlem2 27503 mulog2sumlem3 27504 selberglem1 27513 selberglem2 27514 selberg 27516 selberg3lem1 27525 selbergr 27536 pntpbnd1a 27553 pntibndlem1 27557 pntibndlem3 27560 pntlema 27564 pntlemb 27565 pntlemg 27566 pntlemr 27570 pntlemj 27571 pntlemf 27573 smcnlem 30683 blocnilem 30790 minvecolem3 30862 nmcexi 32012 rpdp2cl 32861 dp2ltc 32866 dpgti 32885 circum 35701 faclim 35768 taupilem1 37344 poimirlem29 37678 mblfinlem3 37688 itg2addnclem2 37701 itg2addnclem3 37702 ftc1anclem7 37728 ftc1anc 37730 heiborlem5 37844 heiborlem7 37846 proot1ex 43195 |
| Copyright terms: Public domain | W3C validator |