![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12206 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rprene0 12217 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
3 | redivcl 11154 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
4 | 3 | 3expb 1100 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
5 | 1, 2, 4 | syl2an 586 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
6 | elrp 12200 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | elrp 12200 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
8 | divgt0 11303 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
9 | 6, 7, 8 | syl2anb 588 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
10 | elrp 12200 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 575 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2050 ≠ wne 2961 class class class wbr 4923 (class class class)co 6970 ℝcr 10328 0cc0 10329 < clt 10468 / cdiv 11092 ℝ+crp 12198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-po 5320 df-so 5321 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-rp 12199 |
This theorem is referenced by: rpreccl 12226 rphalfcl 12227 rpdivcld 12259 bcrpcl 13477 sqrlem7 14463 caurcvgr 14885 isprm5 15901 4sqlem12 16142 sylow1lem1 18478 metss2lem 22818 metss2 22819 minveclem3 23729 ovoliunlem3 23802 vitalilem4 23909 aaliou3lem8 24631 abelthlem8 24724 pigt3 24800 pige3ALT 24802 advlogexp 24933 atan1 25201 log2cnv 25218 cxp2limlem 25249 harmonicbnd4 25284 basellem1 25354 logexprlim 25497 logfacrlim2 25498 bcmono 25549 bposlem1 25556 bposlem7 25562 bposlem9 25564 rplogsumlem1 25756 dchrisumlem3 25763 dchrvmasum2lem 25768 dchrvmasum2if 25769 dchrvmasumlem2 25770 dchrvmasumlem3 25771 dchrvmasumiflem2 25774 dchrisum0lem2a 25789 dchrisum0lem2 25790 mudivsum 25802 mulogsumlem 25803 mulogsum 25804 mulog2sumlem1 25806 mulog2sumlem2 25807 mulog2sumlem3 25808 selberglem1 25817 selberglem2 25818 selberg 25820 selberg3lem1 25829 selbergr 25840 pntpbnd1a 25857 pntibndlem1 25861 pntibndlem3 25864 pntlema 25868 pntlemb 25869 pntlemg 25870 pntlemr 25874 pntlemj 25875 pntlemf 25877 smcnlem 28245 blocnilem 28352 minvecolem3 28425 nmcexi 29578 rpdp2cl 30305 dp2ltc 30310 dpgti 30329 circum 32437 faclim 32498 taupilem1 34044 poimirlem29 34362 mblfinlem3 34372 itg2addnclem2 34385 itg2addnclem3 34386 ftc1anclem7 34414 ftc1anc 34416 heiborlem5 34535 heiborlem7 34537 proot1ex 39197 |
Copyright terms: Public domain | W3C validator |