| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12936 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rprene0 12945 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 3 | redivcl 11877 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | elrp 12929 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | elrp 12929 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 8 | divgt0 12027 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
| 9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
| 10 | elrp 12929 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 < clt 11184 / cdiv 11811 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-rp 12928 |
| This theorem is referenced by: rpreccl 12955 rphalfcl 12956 rpdivcld 12988 bcrpcl 14249 01sqrexlem7 15190 caurcvgr 15616 isprm5 16653 4sqlem12 16903 sylow1lem1 19504 metss2lem 24375 metss2 24376 minveclem3 25305 ovoliunlem3 25381 vitalilem4 25488 aaliou3lem8 26229 abelthlem8 26325 pigt3 26403 pige3ALT 26405 advlogexp 26540 atan1 26814 log2cnv 26830 cxp2limlem 26862 harmonicbnd4 26897 basellem1 26967 logexprlim 27112 logfacrlim2 27113 bcmono 27164 bposlem1 27171 bposlem7 27177 bposlem9 27179 rplogsumlem1 27371 dchrisumlem3 27378 dchrvmasum2lem 27383 dchrvmasum2if 27384 dchrvmasumlem2 27385 dchrvmasumlem3 27386 dchrvmasumiflem2 27389 dchrisum0lem2a 27404 dchrisum0lem2 27405 mudivsum 27417 mulogsumlem 27418 mulogsum 27419 mulog2sumlem1 27421 mulog2sumlem2 27422 mulog2sumlem3 27423 selberglem1 27432 selberglem2 27433 selberg 27435 selberg3lem1 27444 selbergr 27455 pntpbnd1a 27472 pntibndlem1 27476 pntibndlem3 27479 pntlema 27483 pntlemb 27484 pntlemg 27485 pntlemr 27489 pntlemj 27490 pntlemf 27492 smcnlem 30599 blocnilem 30706 minvecolem3 30778 nmcexi 31928 rpdp2cl 32775 dp2ltc 32780 dpgti 32799 circum 35634 faclim 35706 taupilem1 37282 poimirlem29 37616 mblfinlem3 37626 itg2addnclem2 37639 itg2addnclem3 37640 ftc1anclem7 37666 ftc1anc 37668 heiborlem5 37782 heiborlem7 37784 proot1ex 43158 |
| Copyright terms: Public domain | W3C validator |