MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdivcl Structured version   Visualization version   GIF version

Theorem rpdivcl 13082
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpdivcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)

Proof of Theorem rpdivcl
StepHypRef Expression
1 rpre 13065 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rprene0 13074 . . 3 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
3 redivcl 12013 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
433expb 1120 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
51, 2, 4syl2an 595 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
6 elrp 13059 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 elrp 13059 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
8 divgt0 12163 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
96, 7, 8syl2anb 597 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵))
10 elrp 13059 . 2 ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
115, 9, 10sylanbrc 582 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   < clt 11324   / cdiv 11947  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-rp 13058
This theorem is referenced by:  rpreccl  13083  rphalfcl  13084  rpdivcld  13116  bcrpcl  14357  01sqrexlem7  15297  caurcvgr  15722  isprm5  16754  4sqlem12  17003  sylow1lem1  19640  metss2lem  24545  metss2  24546  minveclem3  25482  ovoliunlem3  25558  vitalilem4  25665  aaliou3lem8  26405  abelthlem8  26501  pigt3  26578  pige3ALT  26580  advlogexp  26715  atan1  26989  log2cnv  27005  cxp2limlem  27037  harmonicbnd4  27072  basellem1  27142  logexprlim  27287  logfacrlim2  27288  bcmono  27339  bposlem1  27346  bposlem7  27352  bposlem9  27354  rplogsumlem1  27546  dchrisumlem3  27553  dchrvmasum2lem  27558  dchrvmasum2if  27559  dchrvmasumlem2  27560  dchrvmasumlem3  27561  dchrvmasumiflem2  27564  dchrisum0lem2a  27579  dchrisum0lem2  27580  mudivsum  27592  mulogsumlem  27593  mulogsum  27594  mulog2sumlem1  27596  mulog2sumlem2  27597  mulog2sumlem3  27598  selberglem1  27607  selberglem2  27608  selberg  27610  selberg3lem1  27619  selbergr  27630  pntpbnd1a  27647  pntibndlem1  27651  pntibndlem3  27654  pntlema  27658  pntlemb  27659  pntlemg  27660  pntlemr  27664  pntlemj  27665  pntlemf  27667  smcnlem  30729  blocnilem  30836  minvecolem3  30908  nmcexi  32058  rpdp2cl  32846  dp2ltc  32851  dpgti  32870  circum  35642  faclim  35708  taupilem1  37287  poimirlem29  37609  mblfinlem3  37619  itg2addnclem2  37632  itg2addnclem3  37633  ftc1anclem7  37659  ftc1anc  37661  heiborlem5  37775  heiborlem7  37777  proot1ex  43157
  Copyright terms: Public domain W3C validator