MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdivcl Structured version   Visualization version   GIF version

Theorem rpdivcl 12684
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpdivcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)

Proof of Theorem rpdivcl
StepHypRef Expression
1 rpre 12667 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rprene0 12676 . . 3 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
3 redivcl 11624 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
433expb 1118 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
51, 2, 4syl2an 595 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
6 elrp 12661 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 elrp 12661 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
8 divgt0 11773 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
96, 7, 8syl2anb 597 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵))
10 elrp 12661 . 2 ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
115, 9, 10sylanbrc 582 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   < clt 10940   / cdiv 11562  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660
This theorem is referenced by:  rpreccl  12685  rphalfcl  12686  rpdivcld  12718  bcrpcl  13950  sqrlem7  14888  caurcvgr  15313  isprm5  16340  4sqlem12  16585  sylow1lem1  19118  metss2lem  23573  metss2  23574  minveclem3  24498  ovoliunlem3  24573  vitalilem4  24680  aaliou3lem8  25410  abelthlem8  25503  pigt3  25579  pige3ALT  25581  advlogexp  25715  atan1  25983  log2cnv  25999  cxp2limlem  26030  harmonicbnd4  26065  basellem1  26135  logexprlim  26278  logfacrlim2  26279  bcmono  26330  bposlem1  26337  bposlem7  26343  bposlem9  26345  rplogsumlem1  26537  dchrisumlem3  26544  dchrvmasum2lem  26549  dchrvmasum2if  26550  dchrvmasumlem2  26551  dchrvmasumlem3  26552  dchrvmasumiflem2  26555  dchrisum0lem2a  26570  dchrisum0lem2  26571  mudivsum  26583  mulogsumlem  26584  mulogsum  26585  mulog2sumlem1  26587  mulog2sumlem2  26588  mulog2sumlem3  26589  selberglem1  26598  selberglem2  26599  selberg  26601  selberg3lem1  26610  selbergr  26621  pntpbnd1a  26638  pntibndlem1  26642  pntibndlem3  26645  pntlema  26649  pntlemb  26650  pntlemg  26651  pntlemr  26655  pntlemj  26656  pntlemf  26658  smcnlem  28960  blocnilem  29067  minvecolem3  29139  nmcexi  30289  rpdp2cl  31058  dp2ltc  31063  dpgti  31082  circum  33532  faclim  33618  taupilem1  35419  poimirlem29  35733  mblfinlem3  35743  itg2addnclem2  35756  itg2addnclem3  35757  ftc1anclem7  35783  ftc1anc  35785  heiborlem5  35900  heiborlem7  35902  proot1ex  40942
  Copyright terms: Public domain W3C validator