| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12899 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rprene0 12908 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 3 | redivcl 11840 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | elrp 12892 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | elrp 12892 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 8 | divgt0 11990 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
| 9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
| 10 | elrp 12892 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 < clt 11146 / cdiv 11774 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-rp 12891 |
| This theorem is referenced by: rpreccl 12918 rphalfcl 12919 rpdivcld 12951 bcrpcl 14215 01sqrexlem7 15155 caurcvgr 15581 isprm5 16618 4sqlem12 16868 sylow1lem1 19510 metss2lem 24426 metss2 24427 minveclem3 25356 ovoliunlem3 25432 vitalilem4 25539 aaliou3lem8 26280 abelthlem8 26376 pigt3 26454 pige3ALT 26456 advlogexp 26591 atan1 26865 log2cnv 26881 cxp2limlem 26913 harmonicbnd4 26948 basellem1 27018 logexprlim 27163 logfacrlim2 27164 bcmono 27215 bposlem1 27222 bposlem7 27228 bposlem9 27230 rplogsumlem1 27422 dchrisumlem3 27429 dchrvmasum2lem 27434 dchrvmasum2if 27435 dchrvmasumlem2 27436 dchrvmasumlem3 27437 dchrvmasumiflem2 27440 dchrisum0lem2a 27455 dchrisum0lem2 27456 mudivsum 27468 mulogsumlem 27469 mulogsum 27470 mulog2sumlem1 27472 mulog2sumlem2 27473 mulog2sumlem3 27474 selberglem1 27483 selberglem2 27484 selberg 27486 selberg3lem1 27495 selbergr 27506 pntpbnd1a 27523 pntibndlem1 27527 pntibndlem3 27530 pntlema 27534 pntlemb 27535 pntlemg 27536 pntlemr 27540 pntlemj 27541 pntlemf 27543 smcnlem 30677 blocnilem 30784 minvecolem3 30856 nmcexi 32006 rpdp2cl 32862 dp2ltc 32867 dpgti 32886 circum 35718 faclim 35790 taupilem1 37363 poimirlem29 37697 mblfinlem3 37707 itg2addnclem2 37720 itg2addnclem3 37721 ftc1anclem7 37747 ftc1anc 37749 heiborlem5 37863 heiborlem7 37865 proot1ex 43237 |
| Copyright terms: Public domain | W3C validator |