MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdivcl Structured version   Visualization version   GIF version

Theorem rpdivcl 12755
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
rpdivcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)

Proof of Theorem rpdivcl
StepHypRef Expression
1 rpre 12738 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rprene0 12747 . . 3 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
3 redivcl 11694 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
433expb 1119 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ)
51, 2, 4syl2an 596 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
6 elrp 12732 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 elrp 12732 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
8 divgt0 11843 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
96, 7, 8syl2anb 598 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵))
10 elrp 12732 . 2 ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵)))
115, 9, 10sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   < clt 11009   / cdiv 11632  +crp 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-rp 12731
This theorem is referenced by:  rpreccl  12756  rphalfcl  12757  rpdivcld  12789  bcrpcl  14022  sqrlem7  14960  caurcvgr  15385  isprm5  16412  4sqlem12  16657  sylow1lem1  19203  metss2lem  23667  metss2  23668  minveclem3  24593  ovoliunlem3  24668  vitalilem4  24775  aaliou3lem8  25505  abelthlem8  25598  pigt3  25674  pige3ALT  25676  advlogexp  25810  atan1  26078  log2cnv  26094  cxp2limlem  26125  harmonicbnd4  26160  basellem1  26230  logexprlim  26373  logfacrlim2  26374  bcmono  26425  bposlem1  26432  bposlem7  26438  bposlem9  26440  rplogsumlem1  26632  dchrisumlem3  26639  dchrvmasum2lem  26644  dchrvmasum2if  26645  dchrvmasumlem2  26646  dchrvmasumlem3  26647  dchrvmasumiflem2  26650  dchrisum0lem2a  26665  dchrisum0lem2  26666  mudivsum  26678  mulogsumlem  26679  mulogsum  26680  mulog2sumlem1  26682  mulog2sumlem2  26683  mulog2sumlem3  26684  selberglem1  26693  selberglem2  26694  selberg  26696  selberg3lem1  26705  selbergr  26716  pntpbnd1a  26733  pntibndlem1  26737  pntibndlem3  26740  pntlema  26744  pntlemb  26745  pntlemg  26746  pntlemr  26750  pntlemj  26751  pntlemf  26753  smcnlem  29059  blocnilem  29166  minvecolem3  29238  nmcexi  30388  rpdp2cl  31156  dp2ltc  31161  dpgti  31180  circum  33632  faclim  33712  taupilem1  35492  poimirlem29  35806  mblfinlem3  35816  itg2addnclem2  35829  itg2addnclem3  35830  ftc1anclem7  35856  ftc1anc  35858  heiborlem5  35973  heiborlem7  35975  proot1ex  41026
  Copyright terms: Public domain W3C validator