Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12738 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rprene0 12747 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
3 | redivcl 11694 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
4 | 3 | 3expb 1119 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
6 | elrp 12732 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | elrp 12732 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
8 | divgt0 11843 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
10 | elrp 12732 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 < clt 11009 / cdiv 11632 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-rp 12731 |
This theorem is referenced by: rpreccl 12756 rphalfcl 12757 rpdivcld 12789 bcrpcl 14022 sqrlem7 14960 caurcvgr 15385 isprm5 16412 4sqlem12 16657 sylow1lem1 19203 metss2lem 23667 metss2 23668 minveclem3 24593 ovoliunlem3 24668 vitalilem4 24775 aaliou3lem8 25505 abelthlem8 25598 pigt3 25674 pige3ALT 25676 advlogexp 25810 atan1 26078 log2cnv 26094 cxp2limlem 26125 harmonicbnd4 26160 basellem1 26230 logexprlim 26373 logfacrlim2 26374 bcmono 26425 bposlem1 26432 bposlem7 26438 bposlem9 26440 rplogsumlem1 26632 dchrisumlem3 26639 dchrvmasum2lem 26644 dchrvmasum2if 26645 dchrvmasumlem2 26646 dchrvmasumlem3 26647 dchrvmasumiflem2 26650 dchrisum0lem2a 26665 dchrisum0lem2 26666 mudivsum 26678 mulogsumlem 26679 mulogsum 26680 mulog2sumlem1 26682 mulog2sumlem2 26683 mulog2sumlem3 26684 selberglem1 26693 selberglem2 26694 selberg 26696 selberg3lem1 26705 selbergr 26716 pntpbnd1a 26733 pntibndlem1 26737 pntibndlem3 26740 pntlema 26744 pntlemb 26745 pntlemg 26746 pntlemr 26750 pntlemj 26751 pntlemf 26753 smcnlem 29059 blocnilem 29166 minvecolem3 29238 nmcexi 30388 rpdp2cl 31156 dp2ltc 31161 dpgti 31180 circum 33632 faclim 33712 taupilem1 35492 poimirlem29 35806 mblfinlem3 35816 itg2addnclem2 35829 itg2addnclem3 35830 ftc1anclem7 35856 ftc1anc 35858 heiborlem5 35973 heiborlem7 35975 proot1ex 41026 |
Copyright terms: Public domain | W3C validator |