| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version | ||
| Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12902 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rprene0 12911 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 3 | redivcl 11843 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
| 4 | 3 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
| 5 | 1, 2, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | elrp 12895 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 7 | elrp 12895 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 8 | divgt0 11993 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
| 9 | 6, 7, 8 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
| 10 | elrp 12895 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
| 11 | 5, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 < clt 11149 / cdiv 11777 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-rp 12894 |
| This theorem is referenced by: rpreccl 12921 rphalfcl 12922 rpdivcld 12954 bcrpcl 14215 01sqrexlem7 15155 caurcvgr 15581 isprm5 16618 4sqlem12 16868 sylow1lem1 19477 metss2lem 24397 metss2 24398 minveclem3 25327 ovoliunlem3 25403 vitalilem4 25510 aaliou3lem8 26251 abelthlem8 26347 pigt3 26425 pige3ALT 26427 advlogexp 26562 atan1 26836 log2cnv 26852 cxp2limlem 26884 harmonicbnd4 26919 basellem1 26989 logexprlim 27134 logfacrlim2 27135 bcmono 27186 bposlem1 27193 bposlem7 27199 bposlem9 27201 rplogsumlem1 27393 dchrisumlem3 27400 dchrvmasum2lem 27405 dchrvmasum2if 27406 dchrvmasumlem2 27407 dchrvmasumlem3 27408 dchrvmasumiflem2 27411 dchrisum0lem2a 27426 dchrisum0lem2 27427 mudivsum 27439 mulogsumlem 27440 mulogsum 27441 mulog2sumlem1 27443 mulog2sumlem2 27444 mulog2sumlem3 27445 selberglem1 27454 selberglem2 27455 selberg 27457 selberg3lem1 27466 selbergr 27477 pntpbnd1a 27494 pntibndlem1 27498 pntibndlem3 27501 pntlema 27505 pntlemb 27506 pntlemg 27507 pntlemr 27511 pntlemj 27512 pntlemf 27514 smcnlem 30641 blocnilem 30748 minvecolem3 30820 nmcexi 31970 rpdp2cl 32822 dp2ltc 32827 dpgti 32846 circum 35647 faclim 35719 taupilem1 37295 poimirlem29 37629 mblfinlem3 37639 itg2addnclem2 37652 itg2addnclem3 37653 ftc1anclem7 37679 ftc1anc 37681 heiborlem5 37795 heiborlem7 37797 proot1ex 43169 |
| Copyright terms: Public domain | W3C validator |