MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul2neg Structured version   Visualization version   GIF version

Theorem mul2neg 11699
Description: Product of two negatives. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 30-Jul-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
mul2neg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))

Proof of Theorem mul2neg
StepHypRef Expression
1 negcl 11505 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 mulneg12 11698 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · --𝐵))
4 negneg 11556 . . . 4 (𝐵 ∈ ℂ → --𝐵 = 𝐵)
54adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐵 = 𝐵)
65oveq2d 7446 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · --𝐵) = (𝐴 · 𝐵))
73, 6eqtrd 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  (class class class)co 7430  cc 11150   · cmul 11157  -cneg 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-sub 11491  df-neg 11492
This theorem is referenced by:  mulsub  11703  mulsub2  11704  mul2negi  11708  mul2negd  11715  mullt0  11779  mulge0b  12135  nnmtmip  12289  zmulcl  12663  rpmtmip  13056  sqneg  14152  sqrtneglem  15301  absneg  15312  iseraltlem2  15715  sinneg  16178  cosneg  16179  negdvdsb  16306  atantan  26980
  Copyright terms: Public domain W3C validator