Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmtmip Structured version   Visualization version   GIF version

Theorem nnmtmip 11651
 Description: "Minus times minus is plus, The reason for this we need not discuss." (W. H. Auden, as quoted in M. Guillen "Bridges to Infinity", p. 64, see also Metamath Book, section 1.1.1, p. 5) This statement, formalized to "The product of two negative integers is a positive integer", is proved by the following theorem, therefore it actually need not be discussed anymore. "The reason for this" is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11068, 𝐴 and 𝐵 are complex numbers because of nncn 11633, and (𝐴 · 𝐵) ∈ ℕ because of nnmulcl 11649. This also holds for positive reals, see rpmtmip 12401. Note that the opposites -𝐴 and -𝐵 of the positive integers 𝐴 and 𝐵 are negative integers. (Contributed by AV, 23-Dec-2022.)
Assertion
Ref Expression
nnmtmip ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ)

Proof of Theorem nnmtmip
StepHypRef Expression
1 nncn 11633 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
2 nncn 11633 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
3 mul2neg 11068 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
41, 2, 3syl2an 598 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
5 nnmulcl 11649 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
64, 5eqeltrd 2890 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  (class class class)co 7135  ℂcc 10524   · cmul 10531  -cneg 10860  ℕcn 11625 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-nn 11626 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator