MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmtmip Structured version   Visualization version   GIF version

Theorem nnmtmip 12072
Description: "Minus times minus is plus, The reason for this we need not discuss." (W. H. Auden, as quoted in M. Guillen "Bridges to Infinity", p. 64, see also Metamath Book, section 1.1.1, p. 5) This statement, formalized to "The product of two negative integers is a positive integer", is proved by the following theorem, therefore it actually need not be discussed anymore. "The reason for this" is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11487, 𝐴 and 𝐵 are complex numbers because of nncn 12054, and (𝐴 · 𝐵) ∈ ℕ because of nnmulcl 12070. This also holds for positive reals, see rpmtmip 12827. Note that the opposites -𝐴 and -𝐵 of the positive integers 𝐴 and 𝐵 are negative integers. (Contributed by AV, 23-Dec-2022.)
Assertion
Ref Expression
nnmtmip ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ)

Proof of Theorem nnmtmip
StepHypRef Expression
1 nncn 12054 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
2 nncn 12054 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
3 mul2neg 11487 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
5 nnmulcl 12070 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
64, 5eqeltrd 2838 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  (class class class)co 7315  cc 10942   · cmul 10949  -cneg 11279  cn 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-ltxr 11087  df-sub 11280  df-neg 11281  df-nn 12047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator