| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpmulcl | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpmulcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12938 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpre 12938 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 3 | remulcl 11131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | elrp 12931 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 6 | elrp 12931 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 7 | mulgt0 11229 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 · 𝐵)) |
| 9 | elrp 12931 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℝ+ ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 < (𝐴 · 𝐵))) | |
| 10 | 4, 8, 9 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11045 0cc0 11046 · cmul 11051 < clt 11186 ℝ+crp 12929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-addrcl 11107 ax-mulrcl 11109 ax-rnegex 11117 ax-cnre 11119 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-ltxr 11191 df-rp 12930 |
| This theorem is referenced by: rpmtmip 12955 rpmulcld 12989 moddi 13882 rpexpcl 14023 discr 14183 reccn2 15540 expcnv 15807 fprodrpcl 15899 rprisefaccl 15966 rpmsubg 21374 ovolscalem2 25449 aaliou3lem7 26291 aaliou3lem9 26292 cos02pilt1 26469 cosordlem 26473 logfac 26544 loglesqrt 26705 divsqrtsumlem 26924 basellem1 27025 pclogsum 27160 bclbnd 27225 bposlem7 27235 bposlem8 27236 bposlem9 27237 chebbnd1lem2 27415 dchrisum0lem3 27464 chpdifbndlem2 27499 pntrsumbnd2 27512 pntpbnd1a 27530 pntpbnd2 27532 pntibnd 27538 pntlemd 27539 pntlema 27541 pntlemb 27542 pntlemf 27550 pntlemo 27552 minvecolem3 30856 knoppndvlem18 36511 taupilem1 37303 taupilem2 37304 taupi 37305 ftc1anclem7 37687 ftc1anc 37689 isbnd2 37771 wallispilem4 46060 wallispi 46062 dirker2re 46084 dirkerdenne0 46085 dirkerper 46088 dirkertrigeq 46093 dirkercncflem2 46096 fourierdlem24 46123 sqwvfoura 46220 sqwvfourb 46221 amgmlemALT 49786 |
| Copyright terms: Public domain | W3C validator |