![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpmulcl | Structured version Visualization version GIF version |
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpmulcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13065 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpre 13065 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
3 | remulcl 11269 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
5 | elrp 13059 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
6 | elrp 13059 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
7 | mulgt0 11367 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
8 | 5, 6, 7 | syl2anb 597 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 · 𝐵)) |
9 | elrp 13059 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℝ+ ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 < (𝐴 · 𝐵))) | |
10 | 4, 8, 9 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 · cmul 11189 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-mulrcl 11247 ax-rnegex 11255 ax-cnre 11257 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-rp 13058 |
This theorem is referenced by: rpmtmip 13081 rpmulcld 13115 moddi 13990 rpexpcl 14131 discr 14289 reccn2 15643 expcnv 15912 fprodrpcl 16004 rprisefaccl 16071 rpmsubg 21472 ovolscalem2 25568 aaliou3lem7 26409 aaliou3lem9 26410 cos02pilt1 26586 cosordlem 26590 logfac 26661 loglesqrt 26822 divsqrtsumlem 27041 basellem1 27142 pclogsum 27277 bclbnd 27342 bposlem7 27352 bposlem8 27353 bposlem9 27354 chebbnd1lem2 27532 dchrisum0lem3 27581 chpdifbndlem2 27616 pntrsumbnd2 27629 pntpbnd1a 27647 pntpbnd2 27649 pntibnd 27655 pntlemd 27656 pntlema 27658 pntlemb 27659 pntlemf 27667 pntlemo 27669 minvecolem3 30908 knoppndvlem18 36495 taupilem1 37287 taupilem2 37288 taupi 37289 ftc1anclem7 37659 ftc1anc 37661 isbnd2 37743 wallispilem4 45989 wallispi 45991 dirker2re 46013 dirkerdenne0 46014 dirkerper 46017 dirkertrigeq 46022 dirkercncflem2 46025 fourierdlem24 46052 sqwvfoura 46149 sqwvfourb 46150 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |