| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpmulcl | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpmulcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12902 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpre 12902 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 3 | remulcl 11094 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | elrp 12895 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 6 | elrp 12895 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 7 | mulgt0 11193 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 · 𝐵)) |
| 9 | elrp 12895 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℝ+ ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 < (𝐴 · 𝐵))) | |
| 10 | 4, 8, 9 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 · cmul 11014 < clt 11149 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-mulrcl 11072 ax-rnegex 11080 ax-cnre 11082 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-rp 12894 |
| This theorem is referenced by: rpmtmip 12919 rpmulcld 12953 moddi 13846 rpexpcl 13987 discr 14147 reccn2 15504 expcnv 15771 fprodrpcl 15863 rprisefaccl 15930 rpmsubg 21338 ovolscalem2 25413 aaliou3lem7 26255 aaliou3lem9 26256 cos02pilt1 26433 cosordlem 26437 logfac 26508 loglesqrt 26669 divsqrtsumlem 26888 basellem1 26989 pclogsum 27124 bclbnd 27189 bposlem7 27199 bposlem8 27200 bposlem9 27201 chebbnd1lem2 27379 dchrisum0lem3 27428 chpdifbndlem2 27463 pntrsumbnd2 27476 pntpbnd1a 27494 pntpbnd2 27496 pntibnd 27502 pntlemd 27503 pntlema 27505 pntlemb 27506 pntlemf 27514 pntlemo 27516 minvecolem3 30824 knoppndvlem18 36523 taupilem1 37315 taupilem2 37316 taupi 37317 ftc1anclem7 37699 ftc1anc 37701 isbnd2 37783 wallispilem4 46069 wallispi 46071 dirker2re 46093 dirkerdenne0 46094 dirkerper 46097 dirkertrigeq 46102 dirkercncflem2 46105 fourierdlem24 46132 sqwvfoura 46229 sqwvfourb 46230 amgmlemALT 49808 |
| Copyright terms: Public domain | W3C validator |