Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpmulcl | Structured version Visualization version GIF version |
Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpmulcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12848 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpre 12848 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
3 | remulcl 11066 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
5 | elrp 12842 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
6 | elrp 12842 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
7 | mulgt0 11162 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
8 | 5, 6, 7 | syl2anb 599 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 · 𝐵)) |
9 | elrp 12842 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℝ+ ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 < (𝐴 · 𝐵))) | |
10 | 4, 8, 9 | sylanbrc 584 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 class class class wbr 5100 (class class class)co 7346 ℝcr 10980 0cc0 10981 · cmul 10986 < clt 11119 ℝ+crp 12840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-resscn 11038 ax-1cn 11039 ax-addrcl 11042 ax-mulrcl 11044 ax-rnegex 11052 ax-cnre 11054 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-ltxr 11124 df-rp 12841 |
This theorem is referenced by: rpmtmip 12864 rpmulcld 12898 moddi 13769 rpexpcl 13911 discr 14065 reccn2 15410 expcnv 15680 fprodrpcl 15770 rprisefaccl 15837 rpmsubg 20772 ovolscalem2 24788 aaliou3lem7 25619 aaliou3lem9 25620 cos02pilt1 25792 cosordlem 25796 logfac 25866 loglesqrt 26021 divsqrtsumlem 26239 basellem1 26340 pclogsum 26473 bclbnd 26538 bposlem7 26548 bposlem8 26549 bposlem9 26550 chebbnd1lem2 26728 dchrisum0lem3 26777 chpdifbndlem2 26812 pntrsumbnd2 26825 pntpbnd1a 26843 pntpbnd2 26845 pntibnd 26851 pntlemd 26852 pntlema 26854 pntlemb 26855 pntlemf 26863 pntlemo 26865 minvecolem3 29592 knoppndvlem18 34848 taupilem1 35648 taupilem2 35649 taupi 35650 ftc1anclem7 36012 ftc1anc 36014 isbnd2 36097 wallispilem4 43997 wallispi 43999 dirker2re 44021 dirkerdenne0 44022 dirkerper 44025 dirkertrigeq 44030 dirkercncflem2 44033 fourierdlem24 44060 sqwvfoura 44157 sqwvfourb 44158 amgmlemALT 46924 |
Copyright terms: Public domain | W3C validator |