| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpmulcl | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| rpmulcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12967 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | rpre 12967 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 3 | remulcl 11160 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | elrp 12960 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 6 | elrp 12960 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
| 7 | mulgt0 11258 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
| 8 | 5, 6, 7 | syl2anb 598 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 · 𝐵)) |
| 9 | elrp 12960 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℝ+ ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 < (𝐴 · 𝐵))) | |
| 10 | 4, 8, 9 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-mulrcl 11138 ax-rnegex 11146 ax-cnre 11148 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-rp 12959 |
| This theorem is referenced by: rpmtmip 12984 rpmulcld 13018 moddi 13911 rpexpcl 14052 discr 14212 reccn2 15570 expcnv 15837 fprodrpcl 15929 rprisefaccl 15996 rpmsubg 21355 ovolscalem2 25422 aaliou3lem7 26264 aaliou3lem9 26265 cos02pilt1 26442 cosordlem 26446 logfac 26517 loglesqrt 26678 divsqrtsumlem 26897 basellem1 26998 pclogsum 27133 bclbnd 27198 bposlem7 27208 bposlem8 27209 bposlem9 27210 chebbnd1lem2 27388 dchrisum0lem3 27437 chpdifbndlem2 27472 pntrsumbnd2 27485 pntpbnd1a 27503 pntpbnd2 27505 pntibnd 27511 pntlemd 27512 pntlema 27514 pntlemb 27515 pntlemf 27523 pntlemo 27525 minvecolem3 30812 knoppndvlem18 36524 taupilem1 37316 taupilem2 37317 taupi 37318 ftc1anclem7 37700 ftc1anc 37702 isbnd2 37784 wallispilem4 46073 wallispi 46075 dirker2re 46097 dirkerdenne0 46098 dirkerper 46101 dirkertrigeq 46106 dirkercncflem2 46109 fourierdlem24 46136 sqwvfoura 46233 sqwvfourb 46234 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |