MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupp1 Structured version   Visualization version   GIF version

Theorem smupp1 16457
Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smupp1 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupp1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12842 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2839 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
4 seqp1 13988 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
53, 4syl 17 . . 3 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
6 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
76fveq1i 6862 . . 3 (𝑃‘(𝑁 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1))
86fveq1i 6862 . . . 4 (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)
98oveq1i 7400 . . 3 ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))
105, 7, 93eqtr4g 2790 . 2 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))))
11 1nn0 12465 . . . . . . 7 1 ∈ ℕ0
1211a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
131, 12nn0addcld 12514 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
14 eqeq1 2734 . . . . . . 7 (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0))
15 oveq1 7397 . . . . . . 7 (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1))
1614, 15ifbieq2d 4518 . . . . . 6 (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
17 eqid 2730 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
18 0ex 5265 . . . . . . 7 ∅ ∈ V
19 ovex 7423 . . . . . . 7 ((𝑁 + 1) − 1) ∈ V
2018, 19ifex 4542 . . . . . 6 if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈ V
2116, 17, 20fvmpt 6971 . . . . 5 ((𝑁 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
2213, 21syl 17 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)))
23 nn0p1nn 12488 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
241, 23syl 17 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ)
2524nnne0d 12243 . . . . 5 (𝜑 → (𝑁 + 1) ≠ 0)
26 ifnefalse 4503 . . . . 5 ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
2725, 26syl 17 . . . 4 (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1))
281nn0cnd 12512 . . . . 5 (𝜑𝑁 ∈ ℂ)
2912nn0cnd 12512 . . . . 5 (𝜑 → 1 ∈ ℂ)
3028, 29pncand 11541 . . . 4 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3122, 27, 303eqtrd 2769 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁)
3231oveq2d 7406 . 2 (𝜑 → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁))
33 smuval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
34 smuval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
3533, 34, 6smupf 16455 . . . 4 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
3635, 1ffvelcdmd 7060 . . 3 (𝜑 → (𝑃𝑁) ∈ 𝒫 ℕ0)
37 simpl 482 . . . . 5 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝑃𝑁))
38 simpr 484 . . . . . . . . 9 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁)
3938eleq1d 2814 . . . . . . . 8 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑦𝐴𝑁𝐴))
4038oveq2d 7406 . . . . . . . . 9 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑘𝑦) = (𝑘𝑁))
4140eleq1d 2814 . . . . . . . 8 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → ((𝑘𝑦) ∈ 𝐵 ↔ (𝑘𝑁) ∈ 𝐵))
4239, 41anbi12d 632 . . . . . . 7 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → ((𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵) ↔ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)))
4342rabbidv 3416 . . . . . 6 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)})
44 oveq1 7397 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘𝑁) = (𝑛𝑁))
4544eleq1d 2814 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑘𝑁) ∈ 𝐵 ↔ (𝑛𝑁) ∈ 𝐵))
4645anbi2d 630 . . . . . . 7 (𝑘 = 𝑛 → ((𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵) ↔ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)))
4746cbvrabv 3419 . . . . . 6 {𝑘 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑘𝑁) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}
4843, 47eqtrdi 2781 . . . . 5 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)})
4937, 48oveq12d 7408 . . . 4 ((𝑥 = (𝑃𝑁) ∧ 𝑦 = 𝑁) → (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
50 oveq1 7397 . . . . 5 (𝑝 = 𝑥 → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))
51 eleq1w 2812 . . . . . . . . 9 (𝑚 = 𝑦 → (𝑚𝐴𝑦𝐴))
52 oveq2 7398 . . . . . . . . . 10 (𝑚 = 𝑦 → (𝑛𝑚) = (𝑛𝑦))
5352eleq1d 2814 . . . . . . . . 9 (𝑚 = 𝑦 → ((𝑛𝑚) ∈ 𝐵 ↔ (𝑛𝑦) ∈ 𝐵))
5451, 53anbi12d 632 . . . . . . . 8 (𝑚 = 𝑦 → ((𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵) ↔ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)))
5554rabbidv 3416 . . . . . . 7 (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)})
56 oveq1 7397 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝑘𝑦) = (𝑛𝑦))
5756eleq1d 2814 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑘𝑦) ∈ 𝐵 ↔ (𝑛𝑦) ∈ 𝐵))
5857anbi2d 630 . . . . . . . 8 (𝑘 = 𝑛 → ((𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵) ↔ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)))
5958cbvrabv 3419 . . . . . . 7 {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑛𝑦) ∈ 𝐵)}
6055, 59eqtr4di 2783 . . . . . 6 (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)})
6160oveq2d 7406 . . . . 5 (𝑚 = 𝑦 → (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}))
6250, 61cbvmpov 7487 . . . 4 (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})) = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ ℕ0 ↦ (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦𝐴 ∧ (𝑘𝑦) ∈ 𝐵)}))
63 ovex 7423 . . . 4 ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}) ∈ V
6449, 62, 63ovmpoa 7547 . . 3 (((𝑃𝑁) ∈ 𝒫 ℕ0𝑁 ∈ ℕ0) → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
6536, 1, 64syl2anc 584 . 2 (𝜑 → ((𝑃𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑁) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
6610, 32, 653eqtrd 2769 1 (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁𝐴 ∧ (𝑛𝑁) ∈ 𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  cmpt 5191  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  0cn0 12449  cuz 12800  seqcseq 13973   sadd csad 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sad 16428
This theorem is referenced by:  smuval2  16459  smupvallem  16460  smu01lem  16462  smupval  16465  smup1  16466  smueqlem  16467
  Copyright terms: Public domain W3C validator