Step | Hyp | Ref
| Expression |
1 | | smuval.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | nn0uz 12620 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
4 | | seqp1 13736 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))) |
6 | | smuval.p |
. . . 4
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
7 | 6 | fveq1i 6775 |
. . 3
⊢ (𝑃‘(𝑁 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) |
8 | 6 | fveq1i 6775 |
. . . 4
⊢ (𝑃‘𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) |
9 | 8 | oveq1i 7285 |
. . 3
⊢ ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) |
10 | 5, 7, 9 | 3eqtr4g 2803 |
. 2
⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)))) |
11 | | 1nn0 12249 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
12 | 11 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℕ0) |
13 | 1, 12 | nn0addcld 12297 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
14 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → (𝑛 = 0 ↔ (𝑁 + 1) = 0)) |
15 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → (𝑛 − 1) = ((𝑁 + 1) − 1)) |
16 | 14, 15 | ifbieq2d 4485 |
. . . . . 6
⊢ (𝑛 = (𝑁 + 1) → if(𝑛 = 0, ∅, (𝑛 − 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
17 | | eqid 2738 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 − 1))) = (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))) |
18 | | 0ex 5231 |
. . . . . . 7
⊢ ∅
∈ V |
19 | | ovex 7308 |
. . . . . . 7
⊢ ((𝑁 + 1) − 1) ∈
V |
20 | 18, 19 | ifex 4509 |
. . . . . 6
⊢ if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) ∈
V |
21 | 16, 17, 20 | fvmpt 6875 |
. . . . 5
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
22 | 13, 21 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1))) |
23 | | nn0p1nn 12272 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
24 | 1, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
25 | 24 | nnne0d 12023 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ≠ 0) |
26 | | ifnefalse 4471 |
. . . . 5
⊢ ((𝑁 + 1) ≠ 0 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) −
1)) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ (𝜑 → if((𝑁 + 1) = 0, ∅, ((𝑁 + 1) − 1)) = ((𝑁 + 1) − 1)) |
28 | 1 | nn0cnd 12295 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℂ) |
29 | 12 | nn0cnd 12295 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
30 | 28, 29 | pncand 11333 |
. . . 4
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
31 | 22, 27, 30 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1)) = 𝑁) |
32 | 31 | oveq2d 7291 |
. 2
⊢ (𝜑 → ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘(𝑁 + 1))) = ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))𝑁)) |
33 | | smuval.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
34 | | smuval.b |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
35 | 33, 34, 6 | smupf 16185 |
. . . 4
⊢ (𝜑 → 𝑃:ℕ0⟶𝒫
ℕ0) |
36 | 35, 1 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝑃‘𝑁) ∈ 𝒫
ℕ0) |
37 | | simpl 483 |
. . . . 5
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → 𝑥 = (𝑃‘𝑁)) |
38 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) |
39 | 38 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → (𝑦 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) |
40 | 38 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → (𝑘 − 𝑦) = (𝑘 − 𝑁)) |
41 | 40 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → ((𝑘 − 𝑦) ∈ 𝐵 ↔ (𝑘 − 𝑁) ∈ 𝐵)) |
42 | 39, 41 | anbi12d 631 |
. . . . . . 7
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → ((𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵) ↔ (𝑁 ∈ 𝐴 ∧ (𝑘 − 𝑁) ∈ 𝐵))) |
43 | 42 | rabbidv 3414 |
. . . . . 6
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑘 − 𝑁) ∈ 𝐵)}) |
44 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑘 − 𝑁) = (𝑛 − 𝑁)) |
45 | 44 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑘 − 𝑁) ∈ 𝐵 ↔ (𝑛 − 𝑁) ∈ 𝐵)) |
46 | 45 | anbi2d 629 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝑁 ∈ 𝐴 ∧ (𝑘 − 𝑁) ∈ 𝐵) ↔ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵))) |
47 | 46 | cbvrabv 3426 |
. . . . . 6
⊢ {𝑘 ∈ ℕ0
∣ (𝑁 ∈ 𝐴 ∧ (𝑘 − 𝑁) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)} |
48 | 43, 47 | eqtrdi 2794 |
. . . . 5
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → {𝑘 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)}) |
49 | 37, 48 | oveq12d 7293 |
. . . 4
⊢ ((𝑥 = (𝑃‘𝑁) ∧ 𝑦 = 𝑁) → (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)}) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
50 | | oveq1 7282 |
. . . . 5
⊢ (𝑝 = 𝑥 → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})) |
51 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → (𝑚 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
52 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → (𝑛 − 𝑚) = (𝑛 − 𝑦)) |
53 | 52 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ((𝑛 − 𝑚) ∈ 𝐵 ↔ (𝑛 − 𝑦) ∈ 𝐵)) |
54 | 51, 53 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → ((𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ (𝑛 − 𝑦) ∈ 𝐵))) |
55 | 54 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑛 − 𝑦) ∈ 𝐵)}) |
56 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝑘 − 𝑦) = (𝑛 − 𝑦)) |
57 | 56 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝑘 − 𝑦) ∈ 𝐵 ↔ (𝑛 − 𝑦) ∈ 𝐵)) |
58 | 57 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ (𝑛 − 𝑦) ∈ 𝐵))) |
59 | 58 | cbvrabv 3426 |
. . . . . . 7
⊢ {𝑘 ∈ ℕ0
∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑛 − 𝑦) ∈ 𝐵)} |
60 | 55, 59 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑚 = 𝑦 → {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)} = {𝑘 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)}) |
61 | 60 | oveq2d 7291 |
. . . . 5
⊢ (𝑚 = 𝑦 → (𝑥 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}) = (𝑥 sadd {𝑘 ∈ ℕ0 ∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)})) |
62 | 50, 61 | cbvmpov 7370 |
. . . 4
⊢ (𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})) = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ ℕ0
↦ (𝑥 sadd {𝑘 ∈ ℕ0
∣ (𝑦 ∈ 𝐴 ∧ (𝑘 − 𝑦) ∈ 𝐵)})) |
63 | | ovex 7308 |
. . . 4
⊢ ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)}) ∈ V |
64 | 49, 62, 63 | ovmpoa 7428 |
. . 3
⊢ (((𝑃‘𝑁) ∈ 𝒫 ℕ0 ∧
𝑁 ∈
ℕ0) → ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))𝑁) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
65 | 36, 1, 64 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑃‘𝑁)(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))𝑁) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
66 | 10, 32, 65 | 3eqtrd 2782 |
1
⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |