![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addcand | Structured version Visualization version GIF version |
Description: addcand 11493 without ax-mulcom 11248. Note how the proof is almost identical to addcan 11474. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
sn-addcand.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sn-addcand.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
sn-addcand.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
sn-addcand | ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-addcand.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sn-negex2 42394 | . . 3 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
4 | oveq2 7456 | . . . 4 ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶))) | |
5 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + 𝐴) = 0) | |
6 | 5 | oveq1d 7463 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵)) |
7 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝑥 ∈ ℂ) | |
8 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐴 ∈ ℂ) |
9 | sn-addcand.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐵 ∈ ℂ) |
11 | 7, 8, 10 | addassd 11312 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵))) |
12 | sn-addlid 42380 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵) | |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐵) = 𝐵) |
14 | 6, 11, 13 | 3eqtr3d 2788 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐵)) = 𝐵) |
15 | 5 | oveq1d 7463 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶)) |
16 | sn-addcand.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐶 ∈ ℂ) |
18 | 7, 8, 17 | addassd 11312 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶))) |
19 | sn-addlid 42380 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶) | |
20 | 17, 19 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐶) = 𝐶) |
21 | 15, 18, 20 | 3eqtr3d 2788 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐶)) = 𝐶) |
22 | 14, 21 | eqeq12d 2756 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)) ↔ 𝐵 = 𝐶)) |
23 | 4, 22 | imbitrid 244 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)) |
24 | oveq2 7456 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) | |
25 | 23, 24 | impbid1 225 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
26 | 3, 25 | rexlimddv 3167 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-2 12356 df-3 12357 df-resub 42342 |
This theorem is referenced by: sn-addrid 42396 sn-addid0 42400 sn-subeu 42402 zaddcomlem 42427 zaddcom 42428 |
Copyright terms: Public domain | W3C validator |