Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addcand Structured version   Visualization version   GIF version

Theorem sn-addcand 41595
Description: addcand 11422 without ax-mulcom 11177. Note how the proof is almost identical to addcan 11403. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
sn-addcand.a (𝜑𝐴 ∈ ℂ)
sn-addcand.b (𝜑𝐵 ∈ ℂ)
sn-addcand.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
sn-addcand (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem sn-addcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sn-addcand.a . . 3 (𝜑𝐴 ∈ ℂ)
2 sn-negex2 41594 . . 3 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
31, 2syl 17 . 2 (𝜑 → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
4 oveq2 7420 . . . 4 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)))
5 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + 𝐴) = 0)
65oveq1d 7427 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵))
7 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝑥 ∈ ℂ)
81adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐴 ∈ ℂ)
9 sn-addcand.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐵 ∈ ℂ)
117, 8, 10addassd 11241 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵)))
12 sn-addlid 41580 . . . . . . 7 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
1310, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐵) = 𝐵)
146, 11, 133eqtr3d 2779 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐵)) = 𝐵)
155oveq1d 7427 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶))
16 sn-addcand.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1716adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐶 ∈ ℂ)
187, 8, 17addassd 11241 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶)))
19 sn-addlid 41580 . . . . . . 7 (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶)
2017, 19syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐶) = 𝐶)
2115, 18, 203eqtr3d 2779 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐶)) = 𝐶)
2214, 21eqeq12d 2747 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)) ↔ 𝐵 = 𝐶))
234, 22imbitrid 243 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
24 oveq2 7420 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
2523, 24impbid1 224 . 2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
263, 25rexlimddv 3160 1 (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  (class class class)co 7412  cc 11111  0cc0 11113   + caddc 11116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-2 12280  df-3 12281  df-resub 41542
This theorem is referenced by:  sn-addrid  41596  sn-addid0  41600  sn-subeu  41602  zaddcomlem  41627  zaddcom  41628
  Copyright terms: Public domain W3C validator