MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprfinzcl Structured version   Visualization version   GIF version

Theorem suprfinzcl 12089
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
Assertion
Ref Expression
suprfinzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Proof of Theorem suprfinzcl
Dummy variables 𝑎 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 11980 . . . . . 6 ℤ ⊆ ℝ
2 ltso 10713 . . . . . 6 < Or ℝ
3 soss 5491 . . . . . 6 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . . . 5 < Or ℤ
54a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or ℤ)
6 simp3 1132 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin)
7 simp2 1131 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
8 simp1 1130 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℤ)
9 fisup2g 8924 . . . 4 (( < Or ℤ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ)) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
105, 6, 7, 8, 9syl13anc 1366 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
11 id 22 . . . . . . 7 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
1211, 1syl6ss 3982 . . . . . 6 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
13123ad2ant1 1127 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℝ)
14 ssrexv 4037 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
1513, 14syl 17 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
16 ssel2 3965 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
1716zred 12079 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
1817ex 413 . . . . . . . . . . . . 13 (𝐴 ⊆ ℤ → (𝑎𝐴𝑎 ∈ ℝ))
19183ad2ant1 1127 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎𝐴𝑎 ∈ ℝ))
2019adantr 481 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎𝐴𝑎 ∈ ℝ))
2120imp 407 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
22 simplr 765 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑟 ∈ ℝ)
2321, 22lenltd 10778 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (𝑎𝑟 ↔ ¬ 𝑟 < 𝑎))
2423bicomd 224 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (¬ 𝑟 < 𝑎𝑎𝑟))
2524ralbidva 3200 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎𝐴 𝑎𝑟))
2625biimpd 230 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎𝐴 𝑎𝑟))
2726adantrd 492 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → ((∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∀𝑎𝐴 𝑎𝑟))
2827reximdva 3278 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
2915, 28syld 47 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
3010, 29mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟)
31 suprzcl 12054 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3230, 31syld3an3 1403 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081  wcel 2106  wne 3020  wral 3142  wrex 3143  wss 3939  c0 4294   class class class wbr 5062   Or wor 5471  Fincfn 8501  supcsup 8896  cr 10528   < clt 10667  cle 10668  cz 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974
This theorem is referenced by:  uzfissfz  41456  ssuzfz  41479  sge0isum  42572
  Copyright terms: Public domain W3C validator