MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprfinzcl Structured version   Visualization version   GIF version

Theorem suprfinzcl 12150
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
Assertion
Ref Expression
suprfinzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Proof of Theorem suprfinzcl
Dummy variables 𝑎 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 12041 . . . . . 6 ℤ ⊆ ℝ
2 ltso 10773 . . . . . 6 < Or ℝ
3 soss 5467 . . . . . 6 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . . . 5 < Or ℤ
54a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or ℤ)
6 simp3 1136 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin)
7 simp2 1135 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
8 simp1 1134 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℤ)
9 fisup2g 8979 . . . 4 (( < Or ℤ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ)) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
105, 6, 7, 8, 9syl13anc 1370 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
11 id 22 . . . . . . 7 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
1211, 1sstrdi 3907 . . . . . 6 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
13123ad2ant1 1131 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℝ)
14 ssrexv 3962 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
1513, 14syl 17 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
16 ssel2 3890 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
1716zred 12140 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
1817ex 416 . . . . . . . . . . . . 13 (𝐴 ⊆ ℤ → (𝑎𝐴𝑎 ∈ ℝ))
19183ad2ant1 1131 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎𝐴𝑎 ∈ ℝ))
2019adantr 484 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎𝐴𝑎 ∈ ℝ))
2120imp 410 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
22 simplr 768 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑟 ∈ ℝ)
2321, 22lenltd 10838 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (𝑎𝑟 ↔ ¬ 𝑟 < 𝑎))
2423bicomd 226 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (¬ 𝑟 < 𝑎𝑎𝑟))
2524ralbidva 3126 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎𝐴 𝑎𝑟))
2625biimpd 232 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎𝐴 𝑎𝑟))
2726adantrd 495 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → ((∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∀𝑎𝐴 𝑎𝑟))
2827reximdva 3199 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
2915, 28syld 47 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
3010, 29mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟)
31 suprzcl 12115 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3230, 31syld3an3 1407 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1085  wcel 2112  wne 2952  wral 3071  wrex 3072  wss 3861  c0 4228   class class class wbr 5037   Or wor 5447  Fincfn 8541  supcsup 8951  cr 10588   < clt 10727  cle 10728  cz 12034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-n0 11949  df-z 12035
This theorem is referenced by:  uzfissfz  42372  ssuzfz  42395  sge0isum  43478
  Copyright terms: Public domain W3C validator