MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprfinzcl Structured version   Visualization version   GIF version

Theorem suprfinzcl 12681
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
Assertion
Ref Expression
suprfinzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Proof of Theorem suprfinzcl
Dummy variables 𝑎 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 12570 . . . . . 6 ℤ ⊆ ℝ
2 ltso 11299 . . . . . 6 < Or ℝ
3 soss 5609 . . . . . 6 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . . . 5 < Or ℤ
54a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or ℤ)
6 simp3 1137 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin)
7 simp2 1136 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
8 simp1 1135 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℤ)
9 fisup2g 9466 . . . 4 (( < Or ℤ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ)) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
105, 6, 7, 8, 9syl13anc 1371 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
11 id 22 . . . . . . 7 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
1211, 1sstrdi 3995 . . . . . 6 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
13123ad2ant1 1132 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℝ)
14 ssrexv 4052 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
1513, 14syl 17 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
16 ssel2 3978 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
1716zred 12671 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
1817ex 412 . . . . . . . . . . . . 13 (𝐴 ⊆ ℤ → (𝑎𝐴𝑎 ∈ ℝ))
19183ad2ant1 1132 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎𝐴𝑎 ∈ ℝ))
2019adantr 480 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎𝐴𝑎 ∈ ℝ))
2120imp 406 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
22 simplr 766 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑟 ∈ ℝ)
2321, 22lenltd 11365 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (𝑎𝑟 ↔ ¬ 𝑟 < 𝑎))
2423bicomd 222 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (¬ 𝑟 < 𝑎𝑎𝑟))
2524ralbidva 3174 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎𝐴 𝑎𝑟))
2625biimpd 228 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎𝐴 𝑎𝑟))
2726adantrd 491 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → ((∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∀𝑎𝐴 𝑎𝑟))
2827reximdva 3167 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
2915, 28syld 47 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
3010, 29mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟)
31 suprzcl 12647 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3230, 31syld3an3 1408 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3949  c0 4323   class class class wbr 5149   Or wor 5588  Fincfn 8942  supcsup 9438  cr 11112   < clt 11253  cle 11254  cz 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564
This theorem is referenced by:  uzfissfz  44336  ssuzfz  44359  sge0isum  45443
  Copyright terms: Public domain W3C validator