| Step | Hyp | Ref
| Expression |
| 1 | | zssre 12620 |
. . . . . 6
⊢ ℤ
⊆ ℝ |
| 2 | | ltso 11341 |
. . . . . 6
⊢ < Or
ℝ |
| 3 | | soss 5612 |
. . . . . 6
⊢ (ℤ
⊆ ℝ → ( < Or ℝ → < Or
ℤ)) |
| 4 | 1, 2, 3 | mp2 9 |
. . . . 5
⊢ < Or
ℤ |
| 5 | 4 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or
ℤ) |
| 6 | | simp3 1139 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) |
| 7 | | simp2 1138 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
| 8 | | simp1 1137 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆
ℤ) |
| 9 | | fisup2g 9508 |
. . . 4
⊢ (( <
Or ℤ ∧ (𝐴 ∈
Fin ∧ 𝐴 ≠ ∅
∧ 𝐴 ⊆ ℤ))
→ ∃𝑟 ∈
𝐴 (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏))) |
| 10 | 5, 6, 7, 8, 9 | syl13anc 1374 |
. . 3
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ 𝐴 (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏))) |
| 11 | | id 22 |
. . . . . . 7
⊢ (𝐴 ⊆ ℤ → 𝐴 ⊆
ℤ) |
| 12 | 11, 1 | sstrdi 3996 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ → 𝐴 ⊆
ℝ) |
| 13 | 12 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆
ℝ) |
| 14 | | ssrexv 4053 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
(∃𝑟 ∈ 𝐴 (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)))) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) →
(∃𝑟 ∈ 𝐴 (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)))) |
| 16 | | ssel2 3978 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℤ) |
| 17 | 16 | zred 12722 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 18 | 17 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℤ → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
| 19 | 18 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
| 21 | 20 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 22 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎 ∈ 𝐴) → 𝑟 ∈ ℝ) |
| 23 | 21, 22 | lenltd 11407 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎 ∈ 𝐴) → (𝑎 ≤ 𝑟 ↔ ¬ 𝑟 < 𝑎)) |
| 24 | 23 | bicomd 223 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎 ∈ 𝐴) → (¬ 𝑟 < 𝑎 ↔ 𝑎 ≤ 𝑟)) |
| 25 | 24 | ralbidva 3176 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) →
(∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟)) |
| 26 | 25 | biimpd 229 |
. . . . . 6
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) →
(∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟)) |
| 27 | 26 | adantrd 491 |
. . . . 5
⊢ (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) →
((∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)) → ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟)) |
| 28 | 27 | reximdva 3168 |
. . . 4
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) →
(∃𝑟 ∈ ℝ
(∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟)) |
| 29 | 15, 28 | syld 47 |
. . 3
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) →
(∃𝑟 ∈ 𝐴 (∀𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏 ∈ 𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟)) |
| 30 | 10, 29 | mpd 15 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟) |
| 31 | | suprzcl 12698 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎 ∈ 𝐴 𝑎 ≤ 𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
| 32 | 30, 31 | syld3an3 1411 |
1
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) |