Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 (class class class)co 7408
ℂcc 11107 0cc0 11109
+ caddc 11112 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 |
This theorem is referenced by: negeu
11449 subge0
11726 sublt0d
11839 un0addcl
12504 lincmb01cmp
13471 ico01fl0
13783 discr
14202 ccatlid
14535 swrdfv0
14598 swrdpfx
14656 pfxpfx
14657 cats1un
14670 swrdccatin2
14678 cshwidx0mod
14754 cshw1
14771 relexpaddg
14999 rennim
15185 max0add
15256 fsumsplit
15686 sumsplit
15713 isumsplit
15785 arisum2
15806 binomfallfaclem2
15983 efaddlem
16035 eftlub
16051 ef4p
16055 rpnnen2lem11
16166 moddvds
16207 divalglem9
16343 sadadd2lem2
16390 sadcaddlem
16397 gcdmultipled
16475 pcmpt
16824 4sqlem11
16887 vdwlem6
16918 gsumsgrpccat
18720 mulgnn0dir
18983 sylow1lem1
19465 efgsval2
19600 efgsp1
19604 zaddablx
19739 pgpfaclem1
19950 regsumfsum
21012 regsumsupp
21174 mplcoe5
21594 nrmmetd
24082 blcvx
24313 xrsxmet
24324 reparphti
24512 nulmbl
25051 itg2splitlem
25265 itg2split
25266 itg2monolem1
25267 itgsplitioo
25354 ditgsplit
25377 dvcnp2
25436 dvcmul
25460 dvcmulf
25461 dvmptcmul
25480 dveflem
25495 dvef
25496 dvlipcn
25510 dvlt0
25521 plymullem1
25727 coeeulem
25737 dgradd2
25781 dgrmulc
25784 plydivlem3
25807 aareccl
25838 taylthlem1
25884 sin2kpi
25992 cos2kpi
25993 coshalfpim
26004 sinkpi
26030 chordthmlem3
26336 chordthmlem5
26338 dcubic1lem
26345 dcubic
26348 atancj
26412 atanlogaddlem
26415 atanlogsublem
26417 scvxcvx
26487 zetacvg
26516 ftalem5
26578 ftalem7
26580 basellem3
26584 chtublem
26711 2sqn0
26934 2sqnn
26939 rplogsumlem2
26985 dchrisumlem1
26989 pntrlog2bndlem2
27078 brbtwn2
28160 axlowdimlem16
28212 axeuclidlem
28217 elntg2
28240 eucrct2eupth
29495 2clwwlk2clwwlk
29600 bcm1n
32001 wrdt2ind
32112 esumpfinvallem
33067 signsplypnf
33556 fsum2dsub
33614 logdivsqrle
33657 revpfxsfxrev
34101 cvxpconn
34228 cvxsconn
34229 fwddifnp1
35132 gg-reparphti
35167 gg-dvcnp2
35169 tan2h
36475 poimirlem16
36499 mbfposadd
36530 itg2addnc
36537 ftc1anclem5
36560 bfplem2
36686 aks4d1p1p4
40931 aks4d1p7d1
40942 sticksstones10
40966 sticksstones22
40979 dffltz
41377 3cubeslem3r
41415 pellexlem6
41562 jm2.18
41717 sqrtcval
42382 relexpaddss
42459 int-add02d
42927 sub2times
43972 fzisoeu
44000 xralrple2
44054 cosknegpi
44575 dvsinax
44619 dvasinbx
44626 dvnxpaek
44648 dvnmul
44649 stoweidlem1
44707 stoweidlem13
44719 stoweidlem42
44748 stirlinglem5
44784 stirlinglem11
44790 fourierdlem42
44855 fourierdlem51
44863 fourierdlem88
44900 fourierdlem103
44915 fourierdlem104
44916 fourierdlem107
44919 sqwvfoura
44934 sqwvfourb
44935 fouriersw
44937 elaa2lem
44939 hspmbllem1
45332 cnambpcma
45992 readdcnnred
46001 nn0mnd
46579 altgsumbcALT
47019 nn0sumshdiglemA
47295 line2xlem
47429 line2x
47430 itschlc0yqe
47436 itsclc0yqsollem1
47438 itschlc0xyqsol1
47442 itschlc0xyqsol
47443 2itscp
47457 |