Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1534
∈ wcel 2099 (class class class)co 7420
ℂcc 11136 0cc0 11138
+ caddc 11141 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-ltxr 11283 |
This theorem is referenced by: negeu
11480 subge0
11757 sublt0d
11870 un0addcl
12535 lincmb01cmp
13504 ico01fl0
13816 discr
14234 ccatlid
14568 swrdfv0
14631 swrdpfx
14689 pfxpfx
14690 cats1un
14703 swrdccatin2
14711 cshwidx0mod
14787 cshw1
14804 relexpaddg
15032 rennim
15218 max0add
15289 fsumsplit
15719 sumsplit
15746 isumsplit
15818 arisum2
15839 binomfallfaclem2
16016 efaddlem
16069 eftlub
16085 ef4p
16089 rpnnen2lem11
16200 moddvds
16241 divalglem9
16377 sadadd2lem2
16424 sadcaddlem
16431 gcdmultipled
16509 pcmpt
16860 4sqlem11
16923 vdwlem6
16954 gsumsgrpccat
18791 mulgnn0dir
19058 sylow1lem1
19552 efgsval2
19687 efgsp1
19691 zaddablx
19826 pgpfaclem1
20037 regsumfsum
21367 regsumsupp
21553 mplcoe5
21977 nrmmetd
24482 blcvx
24713 xrsxmet
24724 reparphti
24922 reparphtiOLD
24923 nulmbl
25463 itg2splitlem
25677 itg2split
25678 itg2monolem1
25679 itgsplitioo
25766 ditgsplit
25789 dvcnp2
25848 dvcnp2OLD
25849 dvcmul
25874 dvcmulf
25875 dvmptcmul
25895 dveflem
25910 dvef
25911 dvlipcn
25926 dvlt0
25937 plymullem1
26147 coeeulem
26157 dgradd2
26202 dgrmulc
26205 plydivlem3
26229 aareccl
26260 taylthlem1
26307 sin2kpi
26417 cos2kpi
26418 coshalfpim
26429 sinkpi
26455 chordthmlem3
26765 chordthmlem5
26767 dcubic1lem
26774 dcubic
26777 atancj
26841 atanlogaddlem
26844 atanlogsublem
26846 scvxcvx
26917 zetacvg
26946 ftalem5
27008 ftalem7
27010 basellem3
27014 chtublem
27143 2sqn0
27366 2sqnn
27371 rplogsumlem2
27417 dchrisumlem1
27421 pntrlog2bndlem2
27510 brbtwn2
28715 axlowdimlem16
28767 axeuclidlem
28772 elntg2
28795 eucrct2eupth
30054 2clwwlk2clwwlk
30159 bcm1n
32563 wrdt2ind
32674 esumpfinvallem
33693 signsplypnf
34182 fsum2dsub
34239 logdivsqrle
34282 revpfxsfxrev
34725 cvxpconn
34852 cvxsconn
34853 fwddifnp1
35761 tan2h
37085 poimirlem16
37109 mbfposadd
37140 itg2addnc
37147 ftc1anclem5
37170 bfplem2
37296 aks4d1p1p4
41542 aks4d1p7d1
41553 primrootspoweq0
41577 aks6d1c1
41587 aks6d1c5lem1
41607 sticksstones10
41627 sticksstones22
41640 bcle2d
41651 dffltz
42058 3cubeslem3r
42107 pellexlem6
42254 jm2.18
42409 sqrtcval
43071 relexpaddss
43148 int-add02d
43615 sub2times
44654 fzisoeu
44682 xralrple2
44736 cosknegpi
45257 dvsinax
45301 dvasinbx
45308 dvnxpaek
45330 dvnmul
45331 stoweidlem1
45389 stoweidlem13
45401 stoweidlem42
45430 stirlinglem5
45466 stirlinglem11
45472 fourierdlem42
45537 fourierdlem51
45545 fourierdlem88
45582 fourierdlem103
45597 fourierdlem104
45598 fourierdlem107
45601 sqwvfoura
45616 sqwvfourb
45617 fouriersw
45619 elaa2lem
45621 hspmbllem1
46014 cnambpcma
46674 readdcnnred
46683 nn0mnd
47241 altgsumbcALT
47417 nn0sumshdiglemA
47692 line2xlem
47826 line2x
47827 itschlc0yqe
47833 itsclc0yqsollem1
47835 itschlc0xyqsol1
47839 itschlc0xyqsol
47840 2itscp
47854 |