| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidd | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlidd | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addlid 11444 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Copyright terms: Public domain | W3C validator |