Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 (class class class)co 7411
ℂcc 11110 + caddc 11115 − cmin 11448
-cneg 11449 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 |
This theorem is referenced by: mulsub
11661 mulsubaddmulsub
11682 divsubdir
11912 divsubdiv
11934 ofnegsub
12214 icoshftf1o
13455 fzosubel
13695 modsub12d
13897 expaddzlem
14075 binom2sub
14187 discr
14207 cjreb
15074 recj
15075 remullem
15079 imcj
15083 sqreulem
15310 subcn2
15543 lo1sub
15579 iseraltlem2
15633 iseraltlem3
15634 fsumshftm
15731 fsumsub
15738 incexclem
15786 incexc
15787 bpoly3
16006 efmival
16100 cosadd
16112 sinsub
16115 sincossq
16123 moddvds
16212 dvdsadd2b
16253 bitsres
16418 pythagtriplem4
16756 mulgdirlem
19021 mulgmodid
19029 mulgsubdir
19030 cnsubrg
21205 zringlpirlem3
21235 cphipval
24984 pjthlem1
25178 mbfsub
25403 mbfmulc2
25404 itg2monolem1
25492 itgcnlem
25531 iblsub
25563 itgsub
25567 itgmulc2
25575 dvmptsub
25708 dvmptdiv
25715 dvexp3
25719 dvsincos
25722 dvlipcn
25735 ftc2
25785 aaliou3lem6
26085 logdiv2
26349 tanarg
26351 advlogexp
26387 cxpsub
26414 abscxpbnd
26485 relogbdiv
26508 isosctrlem2
26548 angpieqvdlem
26557 quad2
26568 dcubic1lem
26572 dcubic2
26573 dcubic
26575 mcubic
26576 dquartlem2
26581 dquart
26582 quart1lem
26584 quartlem1
26586 quart
26590 asinlem2
26598 cosasin
26633 atanlogsublem
26644 atantan
26652 atantayl2
26667 ftalem5
26805 basellem9
26817 lgseisenlem1
27102 2sqlem4
27148 rpvmasum2
27239 log2sumbnd
27271 chpdifbndlem1
27280 pntpbnd1
27313 axsegconlem9
28438 axeuclidlem
28475 smcnlem
30205 ipval2
30215 ipasslem2
30340 dipsubdir
30356 his2sub
30600 pjhthlem1
30899 circlemeth
33938 logdivsqrle
33948 fwddifnp1
35429 knoppndvlem2
35692 irrdiff
36510 itg2gt0cn
36846 iblsubnc
36852 itgsubnc
36853 itgmulc2nc
36859 ftc1anclem8
36871 ftc2nc
36873 areacirclem1
36879 dffltz
41678 3cubeslem3r
41727 mzpsubmpt
41783 pellexlem6
41874 pell1234qrreccl
41894 pellfund14
41938 rmxyneg
41961 rmxm1
41975 rmym1
41976 congsub
42011 jm2.19lem1
42030 jm2.19lem4
42033 jm2.19
42034 jm2.26lem3
42042 sqrtcval
42694 sineq0ALT
44000 sub2times
44281 fzisoeu
44309 supsubc
44362 sublimc
44667 reclimc
44668 itgsincmulx
44989 itgsbtaddcnst
44997 stoweidlem10
45025 stoweidlem13
45028 stoweidlem22
45037 stoweidlem23
45038 stoweidlem26
45041 stoweidlem42
45057 stoweidlem47
45062 stirlinglem5
45093 dirkertrigeqlem2
45114 fourierdlem26
45148 fourierdlem36
45158 fourierdlem40
45162 fourierdlem41
45163 fourierdlem48
45169 fourierdlem49
45170 fourierdlem64
45185 fourierdlem78
45199 fourierdlem92
45213 fourierdlem97
45218 fourierdlem101
45222 fourierdlem107
45228 etransclem17
45266 etransclem46
45295 sigarperm
45875 quad1
46587 requad1
46589 requad2
46590 dignn0flhalflem1
47389 1subrec1sub
47479 eenglngeehlnmlem1
47511 eenglngeehlnmlem2
47512 rrx2linest2
47518 itscnhlc0yqe
47533 itschlc0yqe
47534 itsclc0yqsol
47538 itsclinecirc0b
47548 itsclquadb
47550 |