Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 + caddc 11113 − cmin 11444
-cneg 11445 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 |
This theorem is referenced by: mulsub
11657 mulsubaddmulsub
11678 divsubdir
11908 divsubdiv
11930 ofnegsub
12210 icoshftf1o
13451 fzosubel
13691 modsub12d
13893 expaddzlem
14071 binom2sub
14183 discr
14203 cjreb
15070 recj
15071 remullem
15075 imcj
15079 sqreulem
15306 subcn2
15539 lo1sub
15575 iseraltlem2
15629 iseraltlem3
15630 fsumshftm
15727 fsumsub
15734 incexclem
15782 incexc
15783 bpoly3
16002 efmival
16096 cosadd
16108 sinsub
16111 sincossq
16119 moddvds
16208 dvdsadd2b
16249 bitsres
16414 pythagtriplem4
16752 mulgdirlem
18985 mulgmodid
18993 mulgsubdir
18994 cnsubrg
21005 zringlpirlem3
21034 cphipval
24760 pjthlem1
24954 mbfsub
25179 mbfmulc2
25180 itg2monolem1
25268 itgcnlem
25307 iblsub
25339 itgsub
25343 itgmulc2
25351 dvmptsub
25484 dvmptdiv
25491 dvexp3
25495 dvsincos
25498 dvlipcn
25511 ftc2
25561 aaliou3lem6
25861 logdiv2
26125 tanarg
26127 advlogexp
26163 cxpsub
26190 abscxpbnd
26261 relogbdiv
26284 isosctrlem2
26324 angpieqvdlem
26333 quad2
26344 dcubic1lem
26348 dcubic2
26349 dcubic
26351 mcubic
26352 dquartlem2
26357 dquart
26358 quart1lem
26360 quartlem1
26362 quart
26366 asinlem2
26374 cosasin
26409 atanlogsublem
26420 atantan
26428 atantayl2
26443 ftalem5
26581 basellem9
26593 lgseisenlem1
26878 2sqlem4
26924 rpvmasum2
27015 log2sumbnd
27047 chpdifbndlem1
27056 pntpbnd1
27089 axsegconlem9
28183 axeuclidlem
28220 smcnlem
29950 ipval2
29960 ipasslem2
30085 dipsubdir
30101 his2sub
30345 pjhthlem1
30644 circlemeth
33652 logdivsqrle
33662 fwddifnp1
35137 knoppndvlem2
35389 irrdiff
36207 itg2gt0cn
36543 iblsubnc
36549 itgsubnc
36550 itgmulc2nc
36556 ftc1anclem8
36568 ftc2nc
36570 areacirclem1
36576 dffltz
41376 3cubeslem3r
41425 mzpsubmpt
41481 pellexlem6
41572 pell1234qrreccl
41592 pellfund14
41636 rmxyneg
41659 rmxm1
41673 rmym1
41674 congsub
41709 jm2.19lem1
41728 jm2.19lem4
41731 jm2.19
41732 jm2.26lem3
41740 sqrtcval
42392 sineq0ALT
43698 sub2times
43982 fzisoeu
44010 supsubc
44063 sublimc
44368 reclimc
44369 itgsincmulx
44690 itgsbtaddcnst
44698 stoweidlem10
44726 stoweidlem13
44729 stoweidlem22
44738 stoweidlem23
44739 stoweidlem26
44742 stoweidlem42
44758 stoweidlem47
44763 stirlinglem5
44794 dirkertrigeqlem2
44815 fourierdlem26
44849 fourierdlem36
44859 fourierdlem40
44863 fourierdlem41
44864 fourierdlem48
44870 fourierdlem49
44871 fourierdlem64
44886 fourierdlem78
44900 fourierdlem92
44914 fourierdlem97
44919 fourierdlem101
44923 fourierdlem107
44929 etransclem17
44967 etransclem46
44996 sigarperm
45576 quad1
46288 requad1
46290 requad2
46291 dignn0flhalflem1
47301 1subrec1sub
47391 eenglngeehlnmlem1
47423 eenglngeehlnmlem2
47424 rrx2linest2
47430 itscnhlc0yqe
47445 itschlc0yqe
47446 itsclc0yqsol
47450 itsclinecirc0b
47460 itsclquadb
47462 |