MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negid Structured version   Visualization version   GIF version

Theorem negid 10922
Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
negid (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)

Proof of Theorem negid
StepHypRef Expression
1 df-neg 10862 . . 3 -𝐴 = (0 − 𝐴)
21oveq2i 7151 . 2 (𝐴 + -𝐴) = (𝐴 + (0 − 𝐴))
3 0cn 10622 . . 3 0 ∈ ℂ
4 pncan3 10883 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + (0 − 𝐴)) = 0)
53, 4mpan2 690 . 2 (𝐴 ∈ ℂ → (𝐴 + (0 − 𝐴)) = 0)
62, 5syl5eq 2869 1 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  (class class class)co 7140  cc 10524  0cc0 10526   + caddc 10529  cmin 10859  -cneg 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862
This theorem is referenced by:  negidi  10944  negidd  10976  eqneg  11349  eqreznegel  12322  shftcan1  14433  efcan  15440  sincossq  15520  cnaddablx  18979  cnaddabl  18980  cnaddinv  18982  cncrng  20110  cnfldneg  20115  cnlmod  23743  cnaddabloOLD  28362  sub2times  41845  altgsumbc  44694
  Copyright terms: Public domain W3C validator