MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negid Structured version   Visualization version   GIF version

Theorem negid 10670
Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
negid (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)

Proof of Theorem negid
StepHypRef Expression
1 df-neg 10609 . . 3 -𝐴 = (0 − 𝐴)
21oveq2i 6933 . 2 (𝐴 + -𝐴) = (𝐴 + (0 − 𝐴))
3 0cn 10368 . . 3 0 ∈ ℂ
4 pncan3 10630 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + (0 − 𝐴)) = 0)
53, 4mpan2 681 . 2 (𝐴 ∈ ℂ → (𝐴 + (0 − 𝐴)) = 0)
62, 5syl5eq 2825 1 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  (class class class)co 6922  cc 10270  0cc0 10272   + caddc 10275  cmin 10606  -cneg 10607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-ltxr 10416  df-sub 10608  df-neg 10609
This theorem is referenced by:  negidi  10692  negidd  10724  eqneg  11095  eqreznegel  12081  shftcan1  14230  efcan  15228  sincossq  15308  cnaddablx  18657  cnaddabl  18658  cnaddinv  18660  cncrng  20163  cnfldneg  20168  cnlmod  23347  cnaddabloOLD  28008  sub2times  40378  altgsumbc  43127
  Copyright terms: Public domain W3C validator