Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstregt0 Structured version   Visualization version   GIF version

Theorem dstregt0 45293
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dstregt0.1 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
dstregt0 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dstregt0
StepHypRef Expression
1 dstregt0.1 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
21eldifad 3963 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32imcld 15234 . . . . 5 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
43recnd 11289 . . . 4 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
51eldifbd 3964 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ ℝ)
6 reim0b 15158 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
72, 6syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
85, 7mtbid 324 . . . . 5 (𝜑 → ¬ (ℑ‘𝐴) = 0)
98neqned 2947 . . . 4 (𝜑 → (ℑ‘𝐴) ≠ 0)
104, 9absrpcld 15487 . . 3 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1110rphalfcld 13089 . 2 (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
122adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
13 recn 11245 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14imsubd 15256 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦)))
16 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716reim0d 15264 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
1817oveq2d 7447 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0))
194adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
2019subid1d 11609 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
2115, 18, 203eqtrrd 2782 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴𝑦)))
2221fveq2d 6910 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴𝑦))))
2322oveq1d 7446 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴𝑦))) / 2))
2421, 19eqeltrrd 2842 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ∈ ℂ)
2524abscld 15475 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ)
2625rehalfcld 12513 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) ∈ ℝ)
2712, 14subcld 11620 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐴𝑦) ∈ ℂ)
2827abscld 15475 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐴𝑦)) ∈ ℝ)
299adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
3021, 29eqnetrrd 3009 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ≠ 0)
3124, 30absrpcld 15487 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+)
32 rphalflt 13064 . . . . . 6 ((abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
3331, 32syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
34 absimle 15348 . . . . . 6 ((𝐴𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3527, 34syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3626, 25, 28, 33, 35ltletrd 11421 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(𝐴𝑦)))
3723, 36eqbrtrd 5165 . . 3 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
3837ralrimiva 3146 . 2 (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
39 breq1 5146 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4039ralbidv 3178 . . 3 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4140rspcev 3622 . 2 ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
4211, 38, 41syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  cim 15137  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  limcrecl  45644
  Copyright terms: Public domain W3C validator