![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstregt0 | Structured version Visualization version GIF version |
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dstregt0.1 | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
dstregt0 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstregt0.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifad 3960 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | imcld 15144 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
4 | 3 | recnd 11244 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℂ) |
5 | 1 | eldifbd 3961 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
6 | reim0b 15068 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
8 | 5, 7 | mtbid 323 | . . . . 5 ⊢ (𝜑 → ¬ (ℑ‘𝐴) = 0) |
9 | 8 | neqned 2947 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ≠ 0) |
10 | 4, 9 | absrpcld 15397 | . . 3 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
11 | 10 | rphalfcld 13030 | . 2 ⊢ (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+) |
12 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ) |
13 | recn 11202 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
15 | 12, 14 | imsubd 15166 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦))) |
16 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
17 | 16 | reim0d 15174 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0) |
18 | 17 | oveq2d 7427 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0)) |
19 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ) |
20 | 19 | subid1d 11562 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴)) |
21 | 15, 18, 20 | 3eqtrrd 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴 − 𝑦))) |
22 | 21 | fveq2d 6895 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴 − 𝑦)))) |
23 | 22 | oveq1d 7426 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2)) |
24 | 21, 19 | eqeltrrd 2834 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ∈ ℂ) |
25 | 24 | abscld 15385 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ) |
26 | 25 | rehalfcld 12461 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) ∈ ℝ) |
27 | 12, 14 | subcld 11573 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐴 − 𝑦) ∈ ℂ) |
28 | 27 | abscld 15385 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐴 − 𝑦)) ∈ ℝ) |
29 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0) |
30 | 21, 29 | eqnetrrd 3009 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ≠ 0) |
31 | 24, 30 | absrpcld 15397 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+) |
32 | rphalflt 13005 | . . . . . 6 ⊢ ((abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) | |
33 | 31, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) |
34 | absimle 15258 | . . . . . 6 ⊢ ((𝐴 − 𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) | |
35 | 27, 34 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) |
36 | 26, 25, 28, 33, 35 | ltletrd 11376 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(𝐴 − 𝑦))) |
37 | 23, 36 | eqbrtrd 5170 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
38 | 37 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
39 | breq1 5151 | . . . 4 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) | |
40 | 39 | ralbidv 3177 | . . 3 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) |
41 | 40 | rspcev 3612 | . 2 ⊢ ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
42 | 11, 38, 41 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∖ cdif 3945 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 < clt 11250 ≤ cle 11251 − cmin 11446 / cdiv 11873 2c2 12269 ℝ+crp 12976 ℑcim 15047 abscabs 15183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-n0 12475 df-z 12561 df-uz 12825 df-rp 12977 df-seq 13969 df-exp 14030 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 |
This theorem is referenced by: limcrecl 44424 |
Copyright terms: Public domain | W3C validator |