![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstregt0 | Structured version Visualization version GIF version |
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dstregt0.1 | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
dstregt0 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstregt0.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifad 3923 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | imcld 15086 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
4 | 3 | recnd 11188 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℂ) |
5 | 1 | eldifbd 3924 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
6 | reim0b 15010 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
8 | 5, 7 | mtbid 324 | . . . . 5 ⊢ (𝜑 → ¬ (ℑ‘𝐴) = 0) |
9 | 8 | neqned 2947 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ≠ 0) |
10 | 4, 9 | absrpcld 15339 | . . 3 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
11 | 10 | rphalfcld 12974 | . 2 ⊢ (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+) |
12 | 2 | adantr 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ) |
13 | recn 11146 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
14 | 13 | adantl 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
15 | 12, 14 | imsubd 15108 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦))) |
16 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
17 | 16 | reim0d 15116 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0) |
18 | 17 | oveq2d 7374 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0)) |
19 | 4 | adantr 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ) |
20 | 19 | subid1d 11506 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴)) |
21 | 15, 18, 20 | 3eqtrrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴 − 𝑦))) |
22 | 21 | fveq2d 6847 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴 − 𝑦)))) |
23 | 22 | oveq1d 7373 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2)) |
24 | 21, 19 | eqeltrrd 2835 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ∈ ℂ) |
25 | 24 | abscld 15327 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ) |
26 | 25 | rehalfcld 12405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) ∈ ℝ) |
27 | 12, 14 | subcld 11517 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐴 − 𝑦) ∈ ℂ) |
28 | 27 | abscld 15327 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐴 − 𝑦)) ∈ ℝ) |
29 | 9 | adantr 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0) |
30 | 21, 29 | eqnetrrd 3009 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ≠ 0) |
31 | 24, 30 | absrpcld 15339 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+) |
32 | rphalflt 12949 | . . . . . 6 ⊢ ((abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) | |
33 | 31, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) |
34 | absimle 15200 | . . . . . 6 ⊢ ((𝐴 − 𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) | |
35 | 27, 34 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) |
36 | 26, 25, 28, 33, 35 | ltletrd 11320 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(𝐴 − 𝑦))) |
37 | 23, 36 | eqbrtrd 5128 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
38 | 37 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
39 | breq1 5109 | . . . 4 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) | |
40 | 39 | ralbidv 3171 | . . 3 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) |
41 | 40 | rspcev 3580 | . 2 ⊢ ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
42 | 11, 38, 41 | syl2anc 585 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∖ cdif 3908 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 ℝcr 11055 0cc0 11056 < clt 11194 ≤ cle 11195 − cmin 11390 / cdiv 11817 2c2 12213 ℝ+crp 12920 ℑcim 14989 abscabs 15125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 |
This theorem is referenced by: limcrecl 43956 |
Copyright terms: Public domain | W3C validator |