Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstregt0 Structured version   Visualization version   GIF version

Theorem dstregt0 41701
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dstregt0.1 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
dstregt0 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dstregt0
StepHypRef Expression
1 dstregt0.1 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
21eldifad 3925 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32imcld 14534 . . . . 5 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
43recnd 10647 . . . 4 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
51eldifbd 3926 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ ℝ)
6 reim0b 14458 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
72, 6syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
85, 7mtbid 326 . . . . 5 (𝜑 → ¬ (ℑ‘𝐴) = 0)
98neqned 3013 . . . 4 (𝜑 → (ℑ‘𝐴) ≠ 0)
104, 9absrpcld 14788 . . 3 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1110rphalfcld 12422 . 2 (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
122adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
13 recn 10605 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1413adantl 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14imsubd 14556 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦)))
16 simpr 487 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716reim0d 14564 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
1817oveq2d 7149 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0))
194adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
2019subid1d 10964 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
2115, 18, 203eqtrrd 2860 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴𝑦)))
2221fveq2d 6650 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴𝑦))))
2322oveq1d 7148 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴𝑦))) / 2))
2421, 19eqeltrrd 2912 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ∈ ℂ)
2524abscld 14776 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ)
2625rehalfcld 11863 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) ∈ ℝ)
2712, 14subcld 10975 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐴𝑦) ∈ ℂ)
2827abscld 14776 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐴𝑦)) ∈ ℝ)
299adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
3021, 29eqnetrrd 3074 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ≠ 0)
3124, 30absrpcld 14788 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+)
32 rphalflt 12397 . . . . . 6 ((abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
3331, 32syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
34 absimle 14649 . . . . . 6 ((𝐴𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3527, 34syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3626, 25, 28, 33, 35ltletrd 10778 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(𝐴𝑦)))
3723, 36eqbrtrd 5064 . . 3 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
3837ralrimiva 3169 . 2 (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
39 breq1 5045 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4039ralbidv 3184 . . 3 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4140rspcev 3602 . 2 ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
4211, 38, 41syl2anc 586 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  wrex 3126  cdif 3910   class class class wbr 5042  cfv 6331  (class class class)co 7133  cc 10513  cr 10514  0cc0 10515   < clt 10653  cle 10654  cmin 10848   / cdiv 11275  2c2 11671  +crp 12368  cim 14437  abscabs 14573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575
This theorem is referenced by:  limcrecl  42062
  Copyright terms: Public domain W3C validator