Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstregt0 Structured version   Visualization version   GIF version

Theorem dstregt0 44654
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dstregt0.1 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
dstregt0 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dstregt0
StepHypRef Expression
1 dstregt0.1 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
21eldifad 3957 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32imcld 15169 . . . . 5 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
43recnd 11267 . . . 4 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
51eldifbd 3958 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ ℝ)
6 reim0b 15093 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
72, 6syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
85, 7mtbid 324 . . . . 5 (𝜑 → ¬ (ℑ‘𝐴) = 0)
98neqned 2943 . . . 4 (𝜑 → (ℑ‘𝐴) ≠ 0)
104, 9absrpcld 15422 . . 3 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1110rphalfcld 13055 . 2 (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
122adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
13 recn 11223 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14imsubd 15191 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦)))
16 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716reim0d 15199 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
1817oveq2d 7431 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0))
194adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
2019subid1d 11585 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
2115, 18, 203eqtrrd 2773 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴𝑦)))
2221fveq2d 6896 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴𝑦))))
2322oveq1d 7430 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴𝑦))) / 2))
2421, 19eqeltrrd 2830 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ∈ ℂ)
2524abscld 15410 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ)
2625rehalfcld 12484 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) ∈ ℝ)
2712, 14subcld 11596 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐴𝑦) ∈ ℂ)
2827abscld 15410 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐴𝑦)) ∈ ℝ)
299adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
3021, 29eqnetrrd 3005 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ≠ 0)
3124, 30absrpcld 15422 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+)
32 rphalflt 13030 . . . . . 6 ((abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
3331, 32syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
34 absimle 15283 . . . . . 6 ((𝐴𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3527, 34syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3626, 25, 28, 33, 35ltletrd 11399 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(𝐴𝑦)))
3723, 36eqbrtrd 5165 . . 3 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
3837ralrimiva 3142 . 2 (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
39 breq1 5146 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4039ralbidv 3173 . . 3 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4140rspcev 3608 . 2 ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
4211, 38, 41syl2anc 583 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  cdif 3942   class class class wbr 5143  cfv 6543  (class class class)co 7415  cc 11131  cr 11132  0cc0 11133   < clt 11273  cle 11274  cmin 11469   / cdiv 11896  2c2 12292  +crp 13001  cim 15072  abscabs 15208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210
This theorem is referenced by:  limcrecl  45008
  Copyright terms: Public domain W3C validator