Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstregt0 Structured version   Visualization version   GIF version

Theorem dstregt0 45196
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
dstregt0.1 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
dstregt0 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dstregt0
StepHypRef Expression
1 dstregt0.1 . . . . . . 7 (𝜑𝐴 ∈ (ℂ ∖ ℝ))
21eldifad 3988 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32imcld 15244 . . . . 5 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
43recnd 11318 . . . 4 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
51eldifbd 3989 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ ℝ)
6 reim0b 15168 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
72, 6syl 17 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
85, 7mtbid 324 . . . . 5 (𝜑 → ¬ (ℑ‘𝐴) = 0)
98neqned 2953 . . . 4 (𝜑 → (ℑ‘𝐴) ≠ 0)
104, 9absrpcld 15497 . . 3 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1110rphalfcld 13111 . 2 (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
122adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
13 recn 11274 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
1512, 14imsubd 15266 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦)))
16 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1716reim0d 15274 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0)
1817oveq2d 7464 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0))
194adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
2019subid1d 11636 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
2115, 18, 203eqtrrd 2785 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴𝑦)))
2221fveq2d 6924 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴𝑦))))
2322oveq1d 7463 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴𝑦))) / 2))
2421, 19eqeltrrd 2845 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ∈ ℂ)
2524abscld 15485 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ)
2625rehalfcld 12540 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) ∈ ℝ)
2712, 14subcld 11647 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐴𝑦) ∈ ℂ)
2827abscld 15485 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝐴𝑦)) ∈ ℝ)
299adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
3021, 29eqnetrrd 3015 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (ℑ‘(𝐴𝑦)) ≠ 0)
3124, 30absrpcld 15497 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+)
32 rphalflt 13086 . . . . . 6 ((abs‘(ℑ‘(𝐴𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
3331, 32syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(ℑ‘(𝐴𝑦))))
34 absimle 15358 . . . . . 6 ((𝐴𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3527, 34syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴𝑦))) ≤ (abs‘(𝐴𝑦)))
3626, 25, 28, 33, 35ltletrd 11450 . . . 4 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴𝑦))) / 2) < (abs‘(𝐴𝑦)))
3723, 36eqbrtrd 5188 . . 3 ((𝜑𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
3837ralrimiva 3152 . 2 (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦)))
39 breq1 5169 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4039ralbidv 3184 . . 3 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))))
4140rspcev 3635 . 2 ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴𝑦))) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
4211, 38, 41syl2anc 583 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  +crp 13057  cim 15147  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  limcrecl  45550
  Copyright terms: Public domain W3C validator