![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstregt0 | Structured version Visualization version GIF version |
Description: A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dstregt0.1 | ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
dstregt0 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstregt0.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 2 | imcld 15138 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
4 | 3 | recnd 11238 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℂ) |
5 | 1 | eldifbd 3960 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
6 | reim0b 15062 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
8 | 5, 7 | mtbid 323 | . . . . 5 ⊢ (𝜑 → ¬ (ℑ‘𝐴) = 0) |
9 | 8 | neqned 2947 | . . . 4 ⊢ (𝜑 → (ℑ‘𝐴) ≠ 0) |
10 | 4, 9 | absrpcld 15391 | . . 3 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
11 | 10 | rphalfcld 13024 | . 2 ⊢ (𝜑 → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+) |
12 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ) |
13 | recn 11196 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
15 | 12, 14 | imsubd 15160 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) = ((ℑ‘𝐴) − (ℑ‘𝑦))) |
16 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
17 | 16 | reim0d 15168 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝑦) = 0) |
18 | 17 | oveq2d 7421 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − (ℑ‘𝑦)) = ((ℑ‘𝐴) − 0)) |
19 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ) |
20 | 19 | subid1d 11556 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴)) |
21 | 15, 18, 20 | 3eqtrrd 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) = (ℑ‘(𝐴 − 𝑦))) |
22 | 21 | fveq2d 6892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴 − 𝑦)))) |
23 | 22 | oveq1d 7420 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) = ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2)) |
24 | 21, 19 | eqeltrrd 2834 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ∈ ℂ) |
25 | 24 | abscld 15379 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ) |
26 | 25 | rehalfcld 12455 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) ∈ ℝ) |
27 | 12, 14 | subcld 11567 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐴 − 𝑦) ∈ ℂ) |
28 | 27 | abscld 15379 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(𝐴 − 𝑦)) ∈ ℝ) |
29 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘𝐴) ≠ 0) |
30 | 21, 29 | eqnetrrd 3009 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝐴 − 𝑦)) ≠ 0) |
31 | 24, 30 | absrpcld 15391 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+) |
32 | rphalflt 12999 | . . . . . 6 ⊢ ((abs‘(ℑ‘(𝐴 − 𝑦))) ∈ ℝ+ → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) | |
33 | 31, 32 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(ℑ‘(𝐴 − 𝑦)))) |
34 | absimle 15252 | . . . . . 6 ⊢ ((𝐴 − 𝑦) ∈ ℂ → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) | |
35 | 27, 34 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (abs‘(ℑ‘(𝐴 − 𝑦))) ≤ (abs‘(𝐴 − 𝑦))) |
36 | 26, 25, 28, 33, 35 | ltletrd 11370 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘(𝐴 − 𝑦))) / 2) < (abs‘(𝐴 − 𝑦))) |
37 | 23, 36 | eqbrtrd 5169 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
38 | 37 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) |
39 | breq1 5150 | . . . 4 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) | |
40 | 39 | ralbidv 3177 | . . 3 ⊢ (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦)) ↔ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦)))) |
41 | 40 | rspcev 3612 | . 2 ⊢ ((((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − 𝑦))) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
42 | 11, 38, 41 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∖ cdif 3944 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 < clt 11244 ≤ cle 11245 − cmin 11440 / cdiv 11867 2c2 12263 ℝ+crp 12970 ℑcim 15041 abscabs 15177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 |
This theorem is referenced by: limcrecl 44331 |
Copyright terms: Public domain | W3C validator |