| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supfirege | Structured version Visualization version GIF version | ||
| Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
| Ref | Expression |
|---|---|
| supfirege.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| supfirege.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| supfirege.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| supfirege.4 | ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) |
| Ref | Expression |
|---|---|
| supfirege | ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11315 | . . . 4 ⊢ < Or ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ) |
| 3 | supfirege.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 4 | supfirege.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 5 | supfirege.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 6 | supfirege.4 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) | |
| 7 | 2, 3, 4, 5, 6 | supgtoreq 9483 | . 2 ⊢ (𝜑 → (𝐶 < 𝑆 ∨ 𝐶 = 𝑆)) |
| 8 | 3, 5 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 5 | ne0d 4317 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 10 | fisupcl 9482 | . . . . . 6 ⊢ (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵) | |
| 11 | 2, 4, 9, 3, 10 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵) |
| 12 | 6, 11 | eqeltrd 2834 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| 13 | 3, 12 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 14 | 8, 13 | leloed 11378 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ (𝐶 < 𝑆 ∨ 𝐶 = 𝑆))) |
| 15 | 7, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 Or wor 5560 Fincfn 8959 supcsup 9452 ℝcr 11128 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-om 7862 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: fsuppmapnn0fiub 14009 ssuzfz 45376 |
| Copyright terms: Public domain | W3C validator |