MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfirege Structured version   Visualization version   GIF version

Theorem supfirege 12170
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supfirege.1 (𝜑𝐵 ⊆ ℝ)
supfirege.2 (𝜑𝐵 ∈ Fin)
supfirege.3 (𝜑𝐶𝐵)
supfirege.4 (𝜑𝑆 = sup(𝐵, ℝ, < ))
Assertion
Ref Expression
supfirege (𝜑𝐶𝑆)

Proof of Theorem supfirege
StepHypRef Expression
1 ltso 11254 . . . 4 < Or ℝ
21a1i 11 . . 3 (𝜑 → < Or ℝ)
3 supfirege.1 . . 3 (𝜑𝐵 ⊆ ℝ)
4 supfirege.2 . . 3 (𝜑𝐵 ∈ Fin)
5 supfirege.3 . . 3 (𝜑𝐶𝐵)
6 supfirege.4 . . 3 (𝜑𝑆 = sup(𝐵, ℝ, < ))
72, 3, 4, 5, 6supgtoreq 9422 . 2 (𝜑 → (𝐶 < 𝑆𝐶 = 𝑆))
83, 5sseldd 3947 . . 3 (𝜑𝐶 ∈ ℝ)
95ne0d 4305 . . . . . 6 (𝜑𝐵 ≠ ∅)
10 fisupcl 9421 . . . . . 6 (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵)
112, 4, 9, 3, 10syl13anc 1374 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵)
126, 11eqeltrd 2828 . . . 4 (𝜑𝑆𝐵)
133, 12sseldd 3947 . . 3 (𝜑𝑆 ∈ ℝ)
148, 13leloed 11317 . 2 (𝜑 → (𝐶𝑆 ↔ (𝐶 < 𝑆𝐶 = 𝑆)))
157, 14mpbird 257 1 (𝜑𝐶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2925  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545  Fincfn 8918  supcsup 9391  cr 11067   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-om 7843  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  fsuppmapnn0fiub  13956  ssuzfz  45345
  Copyright terms: Public domain W3C validator