![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supfirege | Structured version Visualization version GIF version |
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
Ref | Expression |
---|---|
supfirege.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
supfirege.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
supfirege.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supfirege.4 | ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) |
Ref | Expression |
---|---|
supfirege | ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11293 | . . . 4 ⊢ < Or ℝ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ) |
3 | supfirege.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
4 | supfirege.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
5 | supfirege.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
6 | supfirege.4 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) | |
7 | 2, 3, 4, 5, 6 | supgtoreq 9464 | . 2 ⊢ (𝜑 → (𝐶 < 𝑆 ∨ 𝐶 = 𝑆)) |
8 | 3, 5 | sseldd 3983 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | 5 | ne0d 4335 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
10 | fisupcl 9463 | . . . . . 6 ⊢ (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵) | |
11 | 2, 4, 9, 3, 10 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵) |
12 | 6, 11 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
13 | 3, 12 | sseldd 3983 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
14 | 8, 13 | leloed 11356 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ (𝐶 < 𝑆 ∨ 𝐶 = 𝑆))) |
15 | 7, 14 | mpbird 256 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 Or wor 5587 Fincfn 8938 supcsup 9434 ℝcr 11108 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-om 7855 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: fsuppmapnn0fiub 13955 ssuzfz 44049 |
Copyright terms: Public domain | W3C validator |