MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfirege Structured version   Visualization version   GIF version

Theorem supfirege 11626
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supfirege.1 (𝜑𝐵 ⊆ ℝ)
supfirege.2 (𝜑𝐵 ∈ Fin)
supfirege.3 (𝜑𝐶𝐵)
supfirege.4 (𝜑𝑆 = sup(𝐵, ℝ, < ))
Assertion
Ref Expression
supfirege (𝜑𝐶𝑆)

Proof of Theorem supfirege
StepHypRef Expression
1 ltso 10720 . . . 4 < Or ℝ
21a1i 11 . . 3 (𝜑 → < Or ℝ)
3 supfirege.1 . . 3 (𝜑𝐵 ⊆ ℝ)
4 supfirege.2 . . 3 (𝜑𝐵 ∈ Fin)
5 supfirege.3 . . 3 (𝜑𝐶𝐵)
6 supfirege.4 . . 3 (𝜑𝑆 = sup(𝐵, ℝ, < ))
72, 3, 4, 5, 6supgtoreq 8933 . 2 (𝜑 → (𝐶 < 𝑆𝐶 = 𝑆))
83, 5sseldd 3967 . . 3 (𝜑𝐶 ∈ ℝ)
95ne0d 4300 . . . . . 6 (𝜑𝐵 ≠ ∅)
10 fisupcl 8932 . . . . . 6 (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵)
112, 4, 9, 3, 10syl13anc 1368 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵)
126, 11eqeltrd 2913 . . . 4 (𝜑𝑆𝐵)
133, 12sseldd 3967 . . 3 (𝜑𝑆 ∈ ℝ)
148, 13leloed 10782 . 2 (𝜑 → (𝐶𝑆 ↔ (𝐶 < 𝑆𝐶 = 𝑆)))
157, 14mpbird 259 1 (𝜑𝐶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1533  wcel 2110  wne 3016  wss 3935  c0 4290   class class class wbr 5065   Or wor 5472  Fincfn 8508  supcsup 8903  cr 10535   < clt 10674  cle 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-pre-lttri 10610  ax-pre-lttrn 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-om 7580  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680
This theorem is referenced by:  fsuppmapnn0fiub  13358  ssuzfz  41615
  Copyright terms: Public domain W3C validator