MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfirege Structured version   Visualization version   GIF version

Theorem supfirege 12241
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supfirege.1 (𝜑𝐵 ⊆ ℝ)
supfirege.2 (𝜑𝐵 ∈ Fin)
supfirege.3 (𝜑𝐶𝐵)
supfirege.4 (𝜑𝑆 = sup(𝐵, ℝ, < ))
Assertion
Ref Expression
supfirege (𝜑𝐶𝑆)

Proof of Theorem supfirege
StepHypRef Expression
1 ltso 11334 . . . 4 < Or ℝ
21a1i 11 . . 3 (𝜑 → < Or ℝ)
3 supfirege.1 . . 3 (𝜑𝐵 ⊆ ℝ)
4 supfirege.2 . . 3 (𝜑𝐵 ∈ Fin)
5 supfirege.3 . . 3 (𝜑𝐶𝐵)
6 supfirege.4 . . 3 (𝜑𝑆 = sup(𝐵, ℝ, < ))
72, 3, 4, 5, 6supgtoreq 9503 . 2 (𝜑 → (𝐶 < 𝑆𝐶 = 𝑆))
83, 5sseldd 3983 . . 3 (𝜑𝐶 ∈ ℝ)
95ne0d 4339 . . . . . 6 (𝜑𝐵 ≠ ∅)
10 fisupcl 9502 . . . . . 6 (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵)
112, 4, 9, 3, 10syl13anc 1369 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵)
126, 11eqeltrd 2829 . . . 4 (𝜑𝑆𝐵)
133, 12sseldd 3983 . . 3 (𝜑𝑆 ∈ ℝ)
148, 13leloed 11397 . 2 (𝜑 → (𝐶𝑆 ↔ (𝐶 < 𝑆𝐶 = 𝑆)))
157, 14mpbird 256 1 (𝜑𝐶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845   = wceq 1533  wcel 2098  wne 2937  wss 3949  c0 4326   class class class wbr 5152   Or wor 5593  Fincfn 8972  supcsup 9473  cr 11147   < clt 11288  cle 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-resscn 11205  ax-pre-lttri 11222  ax-pre-lttrn 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-om 7879  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294
This theorem is referenced by:  fsuppmapnn0fiub  13998  ssuzfz  44778
  Copyright terms: Public domain W3C validator