| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supfirege | Structured version Visualization version GIF version | ||
| Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
| Ref | Expression |
|---|---|
| supfirege.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| supfirege.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| supfirege.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| supfirege.4 | ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) |
| Ref | Expression |
|---|---|
| supfirege | ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11202 | . . . 4 ⊢ < Or ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ) |
| 3 | supfirege.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 4 | supfirege.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 5 | supfirege.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 6 | supfirege.4 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) | |
| 7 | 2, 3, 4, 5, 6 | supgtoreq 9364 | . 2 ⊢ (𝜑 → (𝐶 < 𝑆 ∨ 𝐶 = 𝑆)) |
| 8 | 3, 5 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 5 | ne0d 4291 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 10 | fisupcl 9363 | . . . . . 6 ⊢ (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵) | |
| 11 | 2, 4, 9, 3, 10 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵) |
| 12 | 6, 11 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| 13 | 3, 12 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 14 | 8, 13 | leloed 11265 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ (𝐶 < 𝑆 ∨ 𝐶 = 𝑆))) |
| 15 | 7, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 Or wor 5528 Fincfn 8877 supcsup 9333 ℝcr 11014 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-om 7805 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: fsuppmapnn0fiub 13902 ssuzfz 45475 |
| Copyright terms: Public domain | W3C validator |