MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfirege Structured version   Visualization version   GIF version

Theorem supfirege 12255
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supfirege.1 (𝜑𝐵 ⊆ ℝ)
supfirege.2 (𝜑𝐵 ∈ Fin)
supfirege.3 (𝜑𝐶𝐵)
supfirege.4 (𝜑𝑆 = sup(𝐵, ℝ, < ))
Assertion
Ref Expression
supfirege (𝜑𝐶𝑆)

Proof of Theorem supfirege
StepHypRef Expression
1 ltso 11341 . . . 4 < Or ℝ
21a1i 11 . . 3 (𝜑 → < Or ℝ)
3 supfirege.1 . . 3 (𝜑𝐵 ⊆ ℝ)
4 supfirege.2 . . 3 (𝜑𝐵 ∈ Fin)
5 supfirege.3 . . 3 (𝜑𝐶𝐵)
6 supfirege.4 . . 3 (𝜑𝑆 = sup(𝐵, ℝ, < ))
72, 3, 4, 5, 6supgtoreq 9510 . 2 (𝜑 → (𝐶 < 𝑆𝐶 = 𝑆))
83, 5sseldd 3984 . . 3 (𝜑𝐶 ∈ ℝ)
95ne0d 4342 . . . . . 6 (𝜑𝐵 ≠ ∅)
10 fisupcl 9509 . . . . . 6 (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵)
112, 4, 9, 3, 10syl13anc 1374 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵)
126, 11eqeltrd 2841 . . . 4 (𝜑𝑆𝐵)
133, 12sseldd 3984 . . 3 (𝜑𝑆 ∈ ℝ)
148, 13leloed 11404 . 2 (𝜑 → (𝐶𝑆 ↔ (𝐶 < 𝑆𝐶 = 𝑆)))
157, 14mpbird 257 1 (𝜑𝐶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333   class class class wbr 5143   Or wor 5591  Fincfn 8985  supcsup 9480  cr 11154   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-om 7888  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  fsuppmapnn0fiub  14032  ssuzfz  45360
  Copyright terms: Public domain W3C validator