MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supfirege Structured version   Visualization version   GIF version

Theorem supfirege 12177
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supfirege.1 (𝜑𝐵 ⊆ ℝ)
supfirege.2 (𝜑𝐵 ∈ Fin)
supfirege.3 (𝜑𝐶𝐵)
supfirege.4 (𝜑𝑆 = sup(𝐵, ℝ, < ))
Assertion
Ref Expression
supfirege (𝜑𝐶𝑆)

Proof of Theorem supfirege
StepHypRef Expression
1 ltso 11261 . . . 4 < Or ℝ
21a1i 11 . . 3 (𝜑 → < Or ℝ)
3 supfirege.1 . . 3 (𝜑𝐵 ⊆ ℝ)
4 supfirege.2 . . 3 (𝜑𝐵 ∈ Fin)
5 supfirege.3 . . 3 (𝜑𝐶𝐵)
6 supfirege.4 . . 3 (𝜑𝑆 = sup(𝐵, ℝ, < ))
72, 3, 4, 5, 6supgtoreq 9429 . 2 (𝜑 → (𝐶 < 𝑆𝐶 = 𝑆))
83, 5sseldd 3950 . . 3 (𝜑𝐶 ∈ ℝ)
95ne0d 4308 . . . . . 6 (𝜑𝐵 ≠ ∅)
10 fisupcl 9428 . . . . . 6 (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵)
112, 4, 9, 3, 10syl13anc 1374 . . . . 5 (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵)
126, 11eqeltrd 2829 . . . 4 (𝜑𝑆𝐵)
133, 12sseldd 3950 . . 3 (𝜑𝑆 ∈ ℝ)
148, 13leloed 11324 . 2 (𝜑 → (𝐶𝑆 ↔ (𝐶 < 𝑆𝐶 = 𝑆)))
157, 14mpbird 257 1 (𝜑𝐶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2926  wss 3917  c0 4299   class class class wbr 5110   Or wor 5548  Fincfn 8921  supcsup 9398  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-om 7846  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  fsuppmapnn0fiub  13963  ssuzfz  45352
  Copyright terms: Public domain W3C validator