Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supfirege | Structured version Visualization version GIF version |
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
Ref | Expression |
---|---|
supfirege.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
supfirege.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
supfirege.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supfirege.4 | ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) |
Ref | Expression |
---|---|
supfirege | ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 10913 | . . . 4 ⊢ < Or ℝ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ) |
3 | supfirege.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
4 | supfirege.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
5 | supfirege.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
6 | supfirege.4 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) | |
7 | 2, 3, 4, 5, 6 | supgtoreq 9086 | . 2 ⊢ (𝜑 → (𝐶 < 𝑆 ∨ 𝐶 = 𝑆)) |
8 | 3, 5 | sseldd 3902 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | 5 | ne0d 4250 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
10 | fisupcl 9085 | . . . . . 6 ⊢ (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵) | |
11 | 2, 4, 9, 3, 10 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵) |
12 | 6, 11 | eqeltrd 2838 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
13 | 3, 12 | sseldd 3902 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
14 | 8, 13 | leloed 10975 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ (𝐶 < 𝑆 ∨ 𝐶 = 𝑆))) |
15 | 7, 14 | mpbird 260 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 Or wor 5467 Fincfn 8626 supcsup 9056 ℝcr 10728 < clt 10867 ≤ cle 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-om 7645 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 |
This theorem is referenced by: fsuppmapnn0fiub 13564 ssuzfz 42561 |
Copyright terms: Public domain | W3C validator |