| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supfirege | Structured version Visualization version GIF version | ||
| Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
| Ref | Expression |
|---|---|
| supfirege.1 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| supfirege.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| supfirege.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| supfirege.4 | ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) |
| Ref | Expression |
|---|---|
| supfirege | ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11254 | . . . 4 ⊢ < Or ℝ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → < Or ℝ) |
| 3 | supfirege.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 4 | supfirege.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 5 | supfirege.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 6 | supfirege.4 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) | |
| 7 | 2, 3, 4, 5, 6 | supgtoreq 9422 | . 2 ⊢ (𝜑 → (𝐶 < 𝑆 ∨ 𝐶 = 𝑆)) |
| 8 | 3, 5 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 9 | 5 | ne0d 4305 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 10 | fisupcl 9421 | . . . . . 6 ⊢ (( < Or ℝ ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ)) → sup(𝐵, ℝ, < ) ∈ 𝐵) | |
| 11 | 2, 4, 9, 3, 10 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → sup(𝐵, ℝ, < ) ∈ 𝐵) |
| 12 | 6, 11 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| 13 | 3, 12 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 14 | 8, 13 | leloed 11317 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ (𝐶 < 𝑆 ∨ 𝐶 = 𝑆))) |
| 15 | 7, 14 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 Or wor 5545 Fincfn 8918 supcsup 9391 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-om 7843 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: fsuppmapnn0fiub 13956 ssuzfz 45345 |
| Copyright terms: Public domain | W3C validator |