MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloed Structured version   Visualization version   GIF version

Theorem leloed 11317
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
leloed (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloed
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leloe 11260 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  cr 11067   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-pre-lttri 11142
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  mulge0  11696  prodgt0  12029  lemul1  12034  fimaxre  12127  fiminre  12130  supfirege  12170  nn0le2is012  12598  nn0o1gt2  16351  2mulprm  16663  reconnlem1  24715  reconnlem2  24716  ivthle  25357  ivthle2  25358  ovolicc2lem3  25420  itgsplitioo  25739  dvlip  25898  dvge0  25911  dvfsumlem1  25932  dgrco  26181  plydivex  26205  coseq00topi  26411  logreclem  26672  scvxcvx  26896  pntrlog2bndlem5  27492  fzo0opth  32728  dnibndlem13  36478  lcmineqlem23  42039  lcmineqlem  42040  aks4d1p1  42064  sticksstones12a  42145  sticksstones22  42156  elpell1qr2  42860  pellfundex  42874  fmul01lt1lem2  45583  wallispilem3  46065  fourierdlem25  46130  fourierdlem42  46147  lighneallem4b  47610  nn0o1gt2ALTV  47695  stgoldbwt  47777  sbgoldbwt  47778  sbgoldbalt  47782  nnsum3primesle9  47795  bgoldbtbndlem1  47806
  Copyright terms: Public domain W3C validator