MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloed Structured version   Visualization version   GIF version

Theorem leloed 11293
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
leloed (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloed
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leloe 11236 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cr 11043   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-pre-lttri 11118
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  mulge0  11672  prodgt0  12005  lemul1  12010  fimaxre  12103  fiminre  12106  supfirege  12146  nn0le2is012  12574  nn0o1gt2  16327  2mulprm  16639  reconnlem1  24691  reconnlem2  24692  ivthle  25333  ivthle2  25334  ovolicc2lem3  25396  itgsplitioo  25715  dvlip  25874  dvge0  25887  dvfsumlem1  25908  dgrco  26157  plydivex  26181  coseq00topi  26387  logreclem  26648  scvxcvx  26872  pntrlog2bndlem5  27468  fzo0opth  32701  dnibndlem13  36451  lcmineqlem23  42012  lcmineqlem  42013  aks4d1p1  42037  sticksstones12a  42118  sticksstones22  42129  elpell1qr2  42833  pellfundex  42847  fmul01lt1lem2  45556  wallispilem3  46038  fourierdlem25  46103  fourierdlem42  46120  lighneallem4b  47583  nn0o1gt2ALTV  47668  stgoldbwt  47750  sbgoldbwt  47751  sbgoldbalt  47755  nnsum3primesle9  47768  bgoldbtbndlem1  47779
  Copyright terms: Public domain W3C validator