MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloed Structured version   Visualization version   GIF version

Theorem leloed 11256
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
leloed (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloed
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leloe 11199 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111   class class class wbr 5089  cr 11005   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-pre-lttri 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152
This theorem is referenced by:  mulge0  11635  prodgt0  11968  lemul1  11973  fimaxre  12066  fiminre  12069  supfirege  12109  nn0le2is012  12537  nn0o1gt2  16292  2mulprm  16604  reconnlem1  24742  reconnlem2  24743  ivthle  25384  ivthle2  25385  ovolicc2lem3  25447  itgsplitioo  25766  dvlip  25925  dvge0  25938  dvfsumlem1  25959  dgrco  26208  plydivex  26232  coseq00topi  26438  logreclem  26699  scvxcvx  26923  pntrlog2bndlem5  27519  fzo0opth  32785  dnibndlem13  36534  lcmineqlem23  42154  lcmineqlem  42155  aks4d1p1  42179  sticksstones12a  42260  sticksstones22  42271  elpell1qr2  42975  pellfundex  42989  fmul01lt1lem2  45695  wallispilem3  46175  fourierdlem25  46240  fourierdlem42  46257  chnsubseqwl  46987  lighneallem4b  47719  nn0o1gt2ALTV  47804  stgoldbwt  47886  sbgoldbwt  47887  sbgoldbalt  47891  nnsum3primesle9  47904  bgoldbtbndlem1  47915
  Copyright terms: Public domain W3C validator