MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloed Structured version   Visualization version   GIF version

Theorem leloed 11378
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
leloed (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloed
StepHypRef Expression
1 ltd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leloe 11321 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  cr 11128   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-pre-lttri 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  mulge0  11755  prodgt0  12088  lemul1  12093  fimaxre  12186  fiminre  12189  supfirege  12229  nn0le2is012  12657  nn0o1gt2  16400  2mulprm  16712  reconnlem1  24766  reconnlem2  24767  ivthle  25409  ivthle2  25410  ovolicc2lem3  25472  itgsplitioo  25791  dvlip  25950  dvge0  25963  dvfsumlem1  25984  dgrco  26233  plydivex  26257  coseq00topi  26463  logreclem  26724  scvxcvx  26948  pntrlog2bndlem5  27544  fzo0opth  32782  dnibndlem13  36508  lcmineqlem23  42064  lcmineqlem  42065  aks4d1p1  42089  sticksstones12a  42170  sticksstones22  42181  metakunt9  42226  elpell1qr2  42895  pellfundex  42909  fmul01lt1lem2  45614  wallispilem3  46096  fourierdlem25  46161  fourierdlem42  46178  lighneallem4b  47623  nn0o1gt2ALTV  47708  stgoldbwt  47790  sbgoldbwt  47791  sbgoldbalt  47795  nnsum3primesle9  47808  bgoldbtbndlem1  47819
  Copyright terms: Public domain W3C validator