Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leloed | Structured version Visualization version GIF version |
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
leloed | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | leloe 11049 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10858 < clt 10997 ≤ cle 10998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-resscn 10916 ax-pre-lttri 10933 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 |
This theorem is referenced by: mulge0 11481 prodgt0 11810 lemul1 11815 fimaxre 11907 fiminre 11910 supfirege 11950 nn0le2is012 12372 nn0o1gt2 16078 2mulprm 16386 reconnlem1 23977 reconnlem2 23978 ivthle 24608 ivthle2 24609 ovolicc2lem3 24671 itgsplitioo 24990 dvlip 25145 dvge0 25158 dvfsumlem1 25178 dgrco 25424 plydivex 25445 coseq00topi 25647 logreclem 25900 scvxcvx 26123 pntrlog2bndlem5 26717 dnibndlem13 34656 lcmineqlem23 40045 lcmineqlem 40046 aks4d1p1 40070 sticksstones12a 40099 sticksstones22 40110 metakunt9 40119 elpell1qr2 40680 pellfundex 40694 fmul01lt1lem2 43085 wallispilem3 43567 fourierdlem25 43632 fourierdlem42 43649 lighneallem4b 45017 nn0o1gt2ALTV 45102 stgoldbwt 45184 sbgoldbwt 45185 sbgoldbalt 45189 nnsum3primesle9 45202 bgoldbtbndlem1 45213 |
Copyright terms: Public domain | W3C validator |