| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecnonsq | Structured version Visualization version GIF version | ||
| Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| rmspecnonsq | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12742 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
| 2 | zsqcl 14036 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℤ) |
| 4 | 1zzd 12503 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℤ) | |
| 5 | 3, 4 | zsubcld 12582 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℤ) |
| 6 | sq1 14102 | . . . . 5 ⊢ (1↑2) = 1 | |
| 7 | eluz2b2 12819 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
| 8 | 7 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
| 9 | 1red 11113 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 10 | eluzelre 12743 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
| 11 | 0le1 11640 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 1) |
| 13 | eluzge2nn0 12790 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ0) | |
| 14 | 13 | nn0ge0d 12445 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 𝐴) |
| 15 | 9, 10, 12, 14 | lt2sqd 14163 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2))) |
| 16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1↑2) < (𝐴↑2)) |
| 17 | 6, 16 | eqbrtrrid 5125 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
| 18 | 10 | resqcld 14032 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
| 19 | 9, 18 | posdifd 11704 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1))) |
| 20 | 17, 19 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 < ((𝐴↑2) − 1)) |
| 21 | elnnz 12478 | . . 3 ⊢ (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1))) | |
| 22 | 5, 20, 21 | sylanbrc 583 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
| 23 | rmspecsqrtnq 42947 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
| 24 | 23 | eldifbd 3910 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
| 25 | 24 | intnand 488 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 26 | df-squarenn 42882 | . . . . 5 ⊢ ◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} | |
| 27 | 26 | eleq2i 2823 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}) |
| 28 | fveq2 6822 | . . . . . 6 ⊢ (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1))) | |
| 29 | 28 | eleq1d 2816 | . . . . 5 ⊢ (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 30 | 29 | elrab 3642 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 31 | 27, 30 | bitr2i 276 | . . 3 ⊢ ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN) |
| 32 | 25, 31 | sylnib 328 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN) |
| 33 | 22, 32 | eldifd 3908 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 2c2 12180 ℤcz 12468 ℤ≥cuz 12732 ℚcq 12846 ↑cexp 13968 √csqrt 15140 ◻NNcsquarenn 42877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 df-squarenn 42882 |
| This theorem is referenced by: rmspecfund 42950 rmxyelqirr 42951 rmxycomplete 42958 rmbaserp 42960 rmxyneg 42961 rmxm1 42975 rmxluc 42977 rmxdbl 42980 ltrmxnn0 42990 jm2.19lem1 43030 jm2.23 43037 rmxdiophlem 43056 |
| Copyright terms: Public domain | W3C validator |