| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecnonsq | Structured version Visualization version GIF version | ||
| Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| rmspecnonsq | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12779 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
| 2 | zsqcl 14070 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℤ) |
| 4 | 1zzd 12540 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℤ) | |
| 5 | 3, 4 | zsubcld 12619 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℤ) |
| 6 | sq1 14136 | . . . . 5 ⊢ (1↑2) = 1 | |
| 7 | eluz2b2 12856 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
| 8 | 7 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
| 9 | 1red 11151 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 10 | eluzelre 12780 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
| 11 | 0le1 11677 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 1) |
| 13 | eluzge2nn0 12827 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ0) | |
| 14 | 13 | nn0ge0d 12482 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 𝐴) |
| 15 | 9, 10, 12, 14 | lt2sqd 14197 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2))) |
| 16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1↑2) < (𝐴↑2)) |
| 17 | 6, 16 | eqbrtrrid 5138 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
| 18 | 10 | resqcld 14066 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
| 19 | 9, 18 | posdifd 11741 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1))) |
| 20 | 17, 19 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 < ((𝐴↑2) − 1)) |
| 21 | elnnz 12515 | . . 3 ⊢ (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1))) | |
| 22 | 5, 20, 21 | sylanbrc 583 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
| 23 | rmspecsqrtnq 42867 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
| 24 | 23 | eldifbd 3924 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
| 25 | 24 | intnand 488 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 26 | df-squarenn 42802 | . . . . 5 ⊢ ◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} | |
| 27 | 26 | eleq2i 2820 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}) |
| 28 | fveq2 6840 | . . . . . 6 ⊢ (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1))) | |
| 29 | 28 | eleq1d 2813 | . . . . 5 ⊢ (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 30 | 29 | elrab 3656 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
| 31 | 27, 30 | bitr2i 276 | . . 3 ⊢ ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN) |
| 32 | 25, 31 | sylnib 328 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN) |
| 33 | 22, 32 | eldifd 3922 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 2c2 12217 ℤcz 12505 ℤ≥cuz 12769 ℚcq 12883 ↑cexp 14002 √csqrt 15175 ◻NNcsquarenn 42797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-numer 16681 df-denom 16682 df-squarenn 42802 |
| This theorem is referenced by: rmspecfund 42870 rmxyelqirr 42871 rmxyelqirrOLD 42872 rmxycomplete 42879 rmbaserp 42881 rmxyneg 42882 rmxm1 42896 rmxluc 42898 rmxdbl 42901 ltrmxnn0 42911 jm2.19lem1 42951 jm2.23 42958 rmxdiophlem 42977 |
| Copyright terms: Public domain | W3C validator |