Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecnonsq Structured version   Visualization version   GIF version

Theorem rmspecnonsq 42880
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecnonsq (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))

Proof of Theorem rmspecnonsq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 12745 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 zsqcl 14036 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
31, 2syl 17 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
4 1zzd 12506 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℤ)
53, 4zsubcld 12585 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
6 sq1 14102 . . . . 5 (1↑2) = 1
7 eluz2b2 12822 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
87simprbi 496 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
9 1red 11116 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
10 eluzelre 12746 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
11 0le1 11643 . . . . . . . 8 0 ≤ 1
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
13 eluzge2nn0 12793 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1413nn0ge0d 12448 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
159, 10, 12, 14lt2sqd 14163 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
168, 15mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
176, 16eqbrtrrid 5128 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
1810resqcld 14032 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
199, 18posdifd 11707 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2017, 19mpbid 232 . . 3 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
21 elnnz 12481 . . 3 (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1)))
225, 20, 21sylanbrc 583 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
23 rmspecsqrtnq 42879 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
2423eldifbd 3916 . . . 4 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
2524intnand 488 . . 3 (𝐴 ∈ (ℤ‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
26 df-squarenn 42814 . . . . 5 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
2726eleq2i 2820 . . . 4 (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ})
28 fveq2 6822 . . . . . 6 (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1)))
2928eleq1d 2813 . . . . 5 (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3029elrab 3648 . . . 4 (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3127, 30bitr2i 276 . . 3 ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN)
3225, 31sylnib 328 . 2 (𝐴 ∈ (ℤ‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN)
3322, 32eldifd 3914 1 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  cdif 3900   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   < clt 11149  cle 11150  cmin 11347  cn 12128  2c2 12183  cz 12471  cuz 12735  cq 12849  cexp 13968  csqrt 15140  NNcsquarenn 42809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-squarenn 42814
This theorem is referenced by:  rmspecfund  42882  rmxyelqirr  42883  rmxycomplete  42890  rmbaserp  42892  rmxyneg  42893  rmxm1  42907  rmxluc  42909  rmxdbl  42912  ltrmxnn0  42922  jm2.19lem1  42962  jm2.23  42969  rmxdiophlem  42988
  Copyright terms: Public domain W3C validator