![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecnonsq | Structured version Visualization version GIF version |
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
Ref | Expression |
---|---|
rmspecnonsq | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12885 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
2 | zsqcl 14165 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℤ) |
4 | 1zzd 12645 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℤ) | |
5 | 3, 4 | zsubcld 12724 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℤ) |
6 | sq1 14230 | . . . . 5 ⊢ (1↑2) = 1 | |
7 | eluz2b2 12960 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
8 | 7 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
9 | 1red 11259 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
10 | eluzelre 12886 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
11 | 0le1 11783 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 1) |
13 | eluzge2nn0 12926 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ0) | |
14 | 13 | nn0ge0d 12587 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 𝐴) |
15 | 9, 10, 12, 14 | lt2sqd 14291 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2))) |
16 | 8, 15 | mpbid 232 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1↑2) < (𝐴↑2)) |
17 | 6, 16 | eqbrtrrid 5183 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
18 | 10 | resqcld 14161 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
19 | 9, 18 | posdifd 11847 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1))) |
20 | 17, 19 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 < ((𝐴↑2) − 1)) |
21 | elnnz 12620 | . . 3 ⊢ (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1))) | |
22 | 5, 20, 21 | sylanbrc 583 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | rmspecsqrtnq 42893 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
24 | 23 | eldifbd 3975 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
25 | 24 | intnand 488 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
26 | df-squarenn 42828 | . . . . 5 ⊢ ◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} | |
27 | 26 | eleq2i 2830 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}) |
28 | fveq2 6906 | . . . . . 6 ⊢ (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1))) | |
29 | 28 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
30 | 29 | elrab 3694 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
31 | 27, 30 | bitr2i 276 | . . 3 ⊢ ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN) |
32 | 25, 31 | sylnib 328 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN) |
33 | 22, 32 | eldifd 3973 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 ∖ cdif 3959 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 < clt 11292 ≤ cle 11293 − cmin 11489 ℕcn 12263 2c2 12318 ℤcz 12610 ℤ≥cuz 12875 ℚcq 12987 ↑cexp 14098 √csqrt 15268 ◻NNcsquarenn 42823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-gcd 16528 df-numer 16768 df-denom 16769 df-squarenn 42828 |
This theorem is referenced by: rmspecfund 42896 rmxyelqirr 42897 rmxyelqirrOLD 42898 rmxycomplete 42905 rmbaserp 42907 rmxyneg 42908 rmxm1 42922 rmxluc 42924 rmxdbl 42927 ltrmxnn0 42937 jm2.19lem1 42977 jm2.23 42984 rmxdiophlem 43003 |
Copyright terms: Public domain | W3C validator |