![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecnonsq | Structured version Visualization version GIF version |
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
Ref | Expression |
---|---|
rmspecnonsq | ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12829 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
2 | zsqcl 14091 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℤ) |
4 | 1zzd 12590 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℤ) | |
5 | 3, 4 | zsubcld 12668 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℤ) |
6 | sq1 14156 | . . . . 5 ⊢ (1↑2) = 1 | |
7 | eluz2b2 12902 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
8 | 7 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
9 | 1red 11212 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
10 | eluzelre 12830 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
11 | 0le1 11734 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 1) |
13 | eluzge2nn0 12868 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ0) | |
14 | 13 | nn0ge0d 12532 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ 𝐴) |
15 | 9, 10, 12, 14 | lt2sqd 14216 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2))) |
16 | 8, 15 | mpbid 231 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1↑2) < (𝐴↑2)) |
17 | 6, 16 | eqbrtrrid 5174 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
18 | 10 | resqcld 14087 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
19 | 9, 18 | posdifd 11798 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1))) |
20 | 17, 19 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 < ((𝐴↑2) − 1)) |
21 | elnnz 12565 | . . 3 ⊢ (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1))) | |
22 | 5, 20, 21 | sylanbrc 582 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | rmspecsqrtnq 42133 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) | |
24 | 23 | eldifbd 3953 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
25 | 24 | intnand 488 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
26 | df-squarenn 42068 | . . . . 5 ⊢ ◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} | |
27 | 26 | eleq2i 2817 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}) |
28 | fveq2 6881 | . . . . . 6 ⊢ (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1))) | |
29 | 28 | eleq1d 2810 | . . . . 5 ⊢ (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
30 | 29 | elrab 3675 | . . . 4 ⊢ (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ)) |
31 | 27, 30 | bitr2i 276 | . . 3 ⊢ ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN) |
32 | 25, 31 | sylnib 328 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN) |
33 | 22, 32 | eldifd 3951 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3424 ∖ cdif 3937 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 0cc0 11106 1c1 11107 < clt 11245 ≤ cle 11246 − cmin 11441 ℕcn 12209 2c2 12264 ℤcz 12555 ℤ≥cuz 12819 ℚcq 12929 ↑cexp 14024 √csqrt 15177 ◻NNcsquarenn 42063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-numer 16670 df-denom 16671 df-squarenn 42068 |
This theorem is referenced by: rmspecfund 42136 rmxyelqirr 42137 rmxyelqirrOLD 42138 rmxycomplete 42145 rmbaserp 42147 rmxyneg 42148 rmxm1 42162 rmxluc 42164 rmxdbl 42167 ltrmxnn0 42177 jm2.19lem1 42217 jm2.23 42224 rmxdiophlem 42243 |
Copyright terms: Public domain | W3C validator |