Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecnonsq Structured version   Visualization version   GIF version

Theorem rmspecnonsq 42895
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecnonsq (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))

Proof of Theorem rmspecnonsq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 12803 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 zsqcl 14094 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
31, 2syl 17 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
4 1zzd 12564 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℤ)
53, 4zsubcld 12643 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
6 sq1 14160 . . . . 5 (1↑2) = 1
7 eluz2b2 12880 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
87simprbi 496 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
9 1red 11175 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
10 eluzelre 12804 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
11 0le1 11701 . . . . . . . 8 0 ≤ 1
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
13 eluzge2nn0 12851 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1413nn0ge0d 12506 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
159, 10, 12, 14lt2sqd 14221 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
168, 15mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
176, 16eqbrtrrid 5143 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
1810resqcld 14090 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
199, 18posdifd 11765 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2017, 19mpbid 232 . . 3 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
21 elnnz 12539 . . 3 (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1)))
225, 20, 21sylanbrc 583 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
23 rmspecsqrtnq 42894 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
2423eldifbd 3927 . . . 4 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
2524intnand 488 . . 3 (𝐴 ∈ (ℤ‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
26 df-squarenn 42829 . . . . 5 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
2726eleq2i 2820 . . . 4 (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ})
28 fveq2 6858 . . . . . 6 (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1)))
2928eleq1d 2813 . . . . 5 (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3029elrab 3659 . . . 4 (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3127, 30bitr2i 276 . . 3 ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN)
3225, 31sylnib 328 . 2 (𝐴 ∈ (ℤ‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN)
3322, 32eldifd 3925 1 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  cz 12529  cuz 12793  cq 12907  cexp 14026  csqrt 15199  NNcsquarenn 42824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-squarenn 42829
This theorem is referenced by:  rmspecfund  42897  rmxyelqirr  42898  rmxyelqirrOLD  42899  rmxycomplete  42906  rmbaserp  42908  rmxyneg  42909  rmxm1  42923  rmxluc  42925  rmxdbl  42928  ltrmxnn0  42938  jm2.19lem1  42978  jm2.23  42985  rmxdiophlem  43004
  Copyright terms: Public domain W3C validator