Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecnonsq Structured version   Visualization version   GIF version

Theorem rmspecnonsq 42134
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecnonsq (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))

Proof of Theorem rmspecnonsq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 12829 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 zsqcl 14091 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
31, 2syl 17 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
4 1zzd 12590 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℤ)
53, 4zsubcld 12668 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
6 sq1 14156 . . . . 5 (1↑2) = 1
7 eluz2b2 12902 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
87simprbi 496 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
9 1red 11212 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
10 eluzelre 12830 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
11 0le1 11734 . . . . . . . 8 0 ≤ 1
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
13 eluzge2nn0 12868 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1413nn0ge0d 12532 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
159, 10, 12, 14lt2sqd 14216 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
168, 15mpbid 231 . . . . 5 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
176, 16eqbrtrrid 5174 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
1810resqcld 14087 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
199, 18posdifd 11798 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2017, 19mpbid 231 . . 3 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
21 elnnz 12565 . . 3 (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1)))
225, 20, 21sylanbrc 582 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
23 rmspecsqrtnq 42133 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
2423eldifbd 3953 . . . 4 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
2524intnand 488 . . 3 (𝐴 ∈ (ℤ‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
26 df-squarenn 42068 . . . . 5 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
2726eleq2i 2817 . . . 4 (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ})
28 fveq2 6881 . . . . . 6 (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1)))
2928eleq1d 2810 . . . . 5 (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3029elrab 3675 . . . 4 (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3127, 30bitr2i 276 . . 3 ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN)
3225, 31sylnib 328 . 2 (𝐴 ∈ (ℤ‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN)
3322, 32eldifd 3951 1 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3424  cdif 3937   class class class wbr 5138  cfv 6533  (class class class)co 7401  cc 11104  0cc0 11106  1c1 11107   < clt 11245  cle 11246  cmin 11441  cn 12209  2c2 12264  cz 12555  cuz 12819  cq 12929  cexp 14024  csqrt 15177  NNcsquarenn 42063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16195  df-gcd 16433  df-numer 16670  df-denom 16671  df-squarenn 42068
This theorem is referenced by:  rmspecfund  42136  rmxyelqirr  42137  rmxyelqirrOLD  42138  rmxycomplete  42145  rmbaserp  42147  rmxyneg  42148  rmxm1  42162  rmxluc  42164  rmxdbl  42167  ltrmxnn0  42177  jm2.19lem1  42217  jm2.23  42224  rmxdiophlem  42243
  Copyright terms: Public domain W3C validator