Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecnonsq Structured version   Visualization version   GIF version

Theorem rmspecnonsq 39510
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecnonsq (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))

Proof of Theorem rmspecnonsq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 12256 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 zsqcl 13497 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
31, 2syl 17 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
4 1zzd 12016 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℤ)
53, 4zsubcld 12095 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
6 sq1 13561 . . . . 5 (1↑2) = 1
7 eluz2b2 12324 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
87simprbi 499 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
9 1red 10645 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
10 eluzelre 12257 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
11 0le1 11166 . . . . . . . 8 0 ≤ 1
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
13 eluzge2nn0 12290 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1413nn0ge0d 11961 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
159, 10, 12, 14lt2sqd 13622 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
168, 15mpbid 234 . . . . 5 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
176, 16eqbrtrrid 5105 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
1810resqcld 13614 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
199, 18posdifd 11230 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2017, 19mpbid 234 . . 3 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
21 elnnz 11994 . . 3 (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1)))
225, 20, 21sylanbrc 585 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
23 rmspecsqrtnq 39509 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
2423eldifbd 3952 . . . 4 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
2524intnand 491 . . 3 (𝐴 ∈ (ℤ‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
26 df-squarenn 39444 . . . . 5 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
2726eleq2i 2907 . . . 4 (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ})
28 fveq2 6673 . . . . . 6 (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1)))
2928eleq1d 2900 . . . . 5 (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3029elrab 3683 . . . 4 (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3127, 30bitr2i 278 . . 3 ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN)
3225, 31sylnib 330 . 2 (𝐴 ∈ (ℤ‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN)
3322, 32eldifd 3950 1 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {crab 3145  cdif 3936   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   < clt 10678  cle 10679  cmin 10873  cn 11641  2c2 11695  cz 11984  cuz 12246  cq 12351  cexp 13432  csqrt 14595  NNcsquarenn 39439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611  df-gcd 15847  df-numer 16078  df-denom 16079  df-squarenn 39444
This theorem is referenced by:  rmspecfund  39512  rmxyelqirr  39513  rmxycomplete  39520  rmbaserp  39522  rmxyneg  39523  rmxm1  39537  rmxluc  39539  rmxdbl  39542  ltrmxnn0  39552  jm2.19lem1  39592  jm2.23  39599  rmxdiophlem  39618
  Copyright terms: Public domain W3C validator