MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspindp2 Structured version   Visualization version   GIF version

Theorem lspindp2 21137
Description: Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
lspindp1.v 𝑉 = (Base‘𝑊)
lspindp1.o 0 = (0g𝑊)
lspindp1.n 𝑁 = (LSpan‘𝑊)
lspindp1.w (𝜑𝑊 ∈ LVec)
lspindp2.x (𝜑𝑋𝑉)
lspindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspindp2.z (𝜑𝑍𝑉)
lspindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lspindp2.e (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspindp2 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})))

Proof of Theorem lspindp2
StepHypRef Expression
1 lspindp1.v . 2 𝑉 = (Base‘𝑊)
2 lspindp1.o . 2 0 = (0g𝑊)
3 lspindp1.n . 2 𝑁 = (LSpan‘𝑊)
4 lspindp1.w . 2 (𝜑𝑊 ∈ LVec)
5 lspindp2.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
6 lspindp2.x . 2 (𝜑𝑋𝑉)
7 lspindp2.z . 2 (𝜑𝑍𝑉)
8 lspindp2.q . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
98necomd 2996 . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
10 lspindp2.e . . 3 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
11 prcom 4732 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
1211fveq2i 6909 . . . 4 (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋})
1312eleq2i 2833 . . 3 (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
1410, 13sylnib 328 . 2 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
151, 2, 3, 4, 5, 6, 7, 9, 14lspindp1 21135 1 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626  {cpr 4628  cfv 6561  Basecbs 17247  0gc0g 17484  LSpanclspn 20969  LVecclvec 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102
This theorem is referenced by:  mapdheq4lem  41733  mapdheq4  41734  mapdh6lem1N  41735  mapdh6lem2N  41736  mapdh6aN  41737  hdmap1l6lem1  41809  hdmap1l6lem2  41810  hdmap1l6a  41811
  Copyright terms: Public domain W3C validator