Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspexchn2 | Structured version Visualization version GIF version |
Description: Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 20171 to see if this will shorten proofs. (Contributed by NM, 24-May-2015.) |
Ref | Expression |
---|---|
lspexchn2.v | ⊢ 𝑉 = (Base‘𝑊) |
lspexchn2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspexchn2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspexchn2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspexchn2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspexchn2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lspexchn2.q | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍})) |
lspexchn2.e | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) |
Ref | Expression |
---|---|
lspexchn2 | ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspexchn2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspexchn2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspexchn2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lspexchn2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | lspexchn2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
6 | lspexchn2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
7 | lspexchn2.q | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍})) | |
8 | lspexchn2.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) | |
9 | prcom 4653 | . . . . . 6 ⊢ {𝑍, 𝑌} = {𝑌, 𝑍} | |
10 | 9 | fveq2i 6725 | . . . . 5 ⊢ (𝑁‘{𝑍, 𝑌}) = (𝑁‘{𝑌, 𝑍}) |
11 | 10 | eleq2i 2829 | . . . 4 ⊢ (𝑋 ∈ (𝑁‘{𝑍, 𝑌}) ↔ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
12 | 8, 11 | sylnib 331 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
13 | 1, 2, 3, 4, 5, 6, 7, 12 | lspexchn1 20172 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) |
14 | prcom 4653 | . . . 4 ⊢ {𝑋, 𝑍} = {𝑍, 𝑋} | |
15 | 14 | fveq2i 6725 | . . 3 ⊢ (𝑁‘{𝑋, 𝑍}) = (𝑁‘{𝑍, 𝑋}) |
16 | 15 | eleq2i 2829 | . 2 ⊢ (𝑌 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})) |
17 | 13, 16 | sylnib 331 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2110 {csn 4546 {cpr 4548 ‘cfv 6385 Basecbs 16765 LSpanclspn 20013 LVecclvec 20144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-tpos 7973 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-3 11899 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-0g 16951 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-grp 18373 df-minusg 18374 df-sbg 18375 df-subg 18545 df-cntz 18716 df-lsm 19030 df-cmn 19177 df-abl 19178 df-mgp 19510 df-ur 19522 df-ring 19569 df-oppr 19646 df-dvdsr 19664 df-unit 19665 df-invr 19695 df-drng 19774 df-lmod 19906 df-lss 19974 df-lsp 20014 df-lvec 20145 |
This theorem is referenced by: baerlem5amN 39472 baerlem5bmN 39473 baerlem5abmN 39474 |
Copyright terms: Public domain | W3C validator |