Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlid0 | Structured version Visualization version GIF version |
Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
trlid0.b | ⊢ 𝐵 = (Base‘𝐾) |
trlid0.z | ⊢ 0 = (0.‘𝐾) |
trlid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlid0.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlid0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | trlid0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexnle 38020 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊) |
5 | simpl 483 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | simpr 485 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) | |
7 | trlid0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
9 | 7, 3, 8 | idltrn 38164 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
10 | 9 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
11 | eqid 2738 | . . . 4 ⊢ ( I ↾ 𝐵) = ( I ↾ 𝐵) | |
12 | 7, 1, 2, 3, 8 | ltrnideq 38189 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝)) |
13 | 5, 10, 6, 12 | syl3anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝)) |
14 | 11, 13 | mpbii 232 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
15 | trlid0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
16 | trlid0.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
17 | 1, 15, 2, 3, 8, 16 | trl0 38184 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (( I ↾ 𝐵)‘𝑝) = 𝑝)) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
18 | 5, 6, 10, 14, 17 | syl112anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
19 | 4, 18 | rexlimddv 3220 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 0.cp0 18141 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 |
This theorem is referenced by: tendoid 38787 tendo0tp 38803 cdlemkid2 38938 cdlemk39s-id 38954 dian0 39053 dihmeetlem4preN 39320 |
Copyright terms: Public domain | W3C validator |