Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlid0 Structured version   Visualization version   GIF version

Theorem trlid0 37465
Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
trlid0.b 𝐵 = (Base‘𝐾)
trlid0.z 0 = (0.‘𝐾)
trlid0.h 𝐻 = (LHyp‘𝐾)
trlid0.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlid0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 )

Proof of Theorem trlid0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2801 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 trlid0.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 37295 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊)
5 simpl 486 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simpr 488 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
7 trlid0.b . . . . 5 𝐵 = (Base‘𝐾)
8 eqid 2801 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
97, 3, 8idltrn 37439 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
109adantr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
11 eqid 2801 . . . 4 ( I ↾ 𝐵) = ( I ↾ 𝐵)
127, 1, 2, 3, 8ltrnideq 37464 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
135, 10, 6, 12syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
1411, 13mpbii 236 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
15 trlid0.z . . . 4 0 = (0.‘𝐾)
16 trlid0.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
171, 15, 2, 3, 8, 16trl0 37459 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (( I ↾ 𝐵)‘𝑝) = 𝑝)) → (𝑅‘( I ↾ 𝐵)) = 0 )
185, 6, 10, 14, 17syl112anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘( I ↾ 𝐵)) = 0 )
194, 18rexlimddv 3253 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112   class class class wbr 5033   I cid 5427  cres 5525  cfv 6328  Basecbs 16478  lecple 16567  0.cp0 17642  Atomscatm 36552  HLchlt 36639  LHypclh 37273  LTrncltrn 37390  trLctrl 37447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448
This theorem is referenced by:  tendoid  38062  tendo0tp  38078  cdlemkid2  38213  cdlemk39s-id  38229  dian0  38328  dihmeetlem4preN  38595
  Copyright terms: Public domain W3C validator