| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlid0 | Structured version Visualization version GIF version | ||
| Description: The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| trlid0.b | ⊢ 𝐵 = (Base‘𝐾) |
| trlid0.z | ⊢ 0 = (0.‘𝐾) |
| trlid0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlid0.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlid0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | trlid0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhpexnle 40000 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝(le‘𝐾)𝑊) |
| 5 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) | |
| 7 | trlid0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2729 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 9 | 7, 3, 8 | idltrn 40144 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 11 | eqid 2729 | . . . 4 ⊢ ( I ↾ 𝐵) = ( I ↾ 𝐵) | |
| 12 | 7, 1, 2, 3, 8 | ltrnideq 40169 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝)) |
| 13 | 5, 10, 6, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵) = ( I ↾ 𝐵) ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝)) |
| 14 | 11, 13 | mpbii 233 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
| 15 | trlid0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 16 | trlid0.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 17 | 1, 15, 2, 3, 8, 16 | trl0 40164 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (( I ↾ 𝐵)‘𝑝) = 𝑝)) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
| 18 | 5, 6, 10, 14, 17 | syl112anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
| 19 | 4, 18 | rexlimddv 3140 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 I cid 5532 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 lecple 17227 0.cp0 18382 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 |
| This theorem is referenced by: tendoid 40767 tendo0tp 40783 cdlemkid2 40918 cdlemk39s-id 40934 dian0 41033 dihmeetlem4preN 41300 |
| Copyright terms: Public domain | W3C validator |