Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cgr3swap23 | Structured version Visualization version GIF version |
Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
Ref | Expression |
---|---|
tgcgrxfr.p | ⊢ 𝑃 = (Base‘𝐺) |
tgcgrxfr.m | ⊢ − = (dist‘𝐺) |
tgcgrxfr.i | ⊢ 𝐼 = (Itv‘𝐺) |
tgcgrxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
tgcgrxfr.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnxfr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnxfr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnxfr.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgbtwnxfr.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgbtwnxfr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
Ref | Expression |
---|---|
cgr3swap23 | ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∼ 〈“𝐷𝐹𝐸”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrxfr.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tgcgrxfr.m | . 2 ⊢ − = (dist‘𝐺) | |
3 | tgcgrxfr.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
4 | tgcgrxfr.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgbtwnxfr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | tgbtwnxfr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgbtwnxfr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | tgbtwnxfr.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | tgbtwnxfr.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
10 | tgbtwnxfr.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
11 | tgcgrxfr.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
12 | tgbtwnxfr.2 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | |
13 | 1, 2, 11, 3, 4, 5, 7, 6, 8, 10, 9, 12 | cgr3simp3 26415 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
14 | 1, 2, 11, 4, 6, 5, 9, 8, 13 | tgcgrcomlr 26373 | . 2 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
15 | 1, 2, 11, 3, 4, 5, 7, 6, 8, 10, 9, 12 | cgr3simp2 26414 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
16 | 1, 2, 11, 4, 7, 6, 10, 9, 15 | tgcgrcomlr 26373 | . 2 ⊢ (𝜑 → (𝐶 − 𝐵) = (𝐹 − 𝐸)) |
17 | 1, 2, 11, 3, 4, 5, 7, 6, 8, 10, 9, 12 | cgr3simp1 26413 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
18 | 1, 2, 11, 4, 5, 7, 8, 10, 17 | tgcgrcomlr 26373 | . 2 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18 | trgcgr 26409 | 1 ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∼ 〈“𝐷𝐹𝐸”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 〈“cs3 14251 Basecbs 16541 distcds 16632 TarskiGcstrkg 26323 Itvcitv 26329 cgrGccgrg 26403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 df-s2 14257 df-s3 14258 df-trkgc 26341 df-trkgcb 26343 df-trkg 26346 df-cgrg 26404 |
This theorem is referenced by: cgr3swap13 26418 cgr3rotr 26419 cgr3rotl 26420 lnxfr 26459 lnext 26460 tgfscgr 26461 legov 26478 legov2 26479 legtrd 26482 symquadlem 26582 |
Copyright terms: Public domain | W3C validator |