Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Structured version   Visualization version   GIF version

Theorem trlcoat 36531
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a 𝐴 = (Atoms‘𝐾)
trlcoat.h 𝐻 = (LHyp‘𝐾)
trlcoat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 trlcoat.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 36527 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
433expb 1113 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → (𝐹𝐺) ∈ 𝑇)
5 eqid 2771 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2771 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
7 trlcoat.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
85, 6, 1, 2, 7trlid0b 35986 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
94, 8syldan 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
10 coass 5797 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 simpll 750 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplrl 762 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
135, 1, 2ltrn1o 35931 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1411, 12, 13syl2anc 573 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15 f1ococnv1 6307 . . . . . . . . . . . 12 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1614, 15syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1716coeq1d 5421 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
18 coeq2 5418 . . . . . . . . . . 11 ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
1918adantl 467 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
2010, 17, 193eqtr3a 2829 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
21 simplrr 763 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
225, 1, 2ltrn1o 35931 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2311, 21, 22syl2anc 573 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
24 f1of 6279 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 fcoi2 6220 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
271, 2ltrncnv 35953 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2811, 12, 27syl2anc 573 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
295, 1, 2ltrn1o 35931 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
3011, 28, 29syl2anc 573 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6279 . . . . . . . . . 10 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6219 . . . . . . . . . 10 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3420, 26, 333eqtr3d 2813 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = 𝐹)
3534fveq2d 6337 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (𝑅𝐹))
361, 2, 7trlcnv 35973 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3711, 12, 36syl2anc 573 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐹))
3835, 37eqtr2d 2806 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐺))
3938ex 397 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅𝐹) = (𝑅𝐺)))
409, 39sylbird 250 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) = (0.‘𝐾) → (𝑅𝐹) = (𝑅𝐺)))
4140necon3d 2964 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
42 trlcoat.a . . . . 5 𝐴 = (Atoms‘𝐾)
436, 42, 1, 2, 7trlatn0 35980 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
444, 43syldan 579 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
4541, 44sylibrd 249 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ∈ 𝐴))
46453impia 1109 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   I cid 5157  ccnv 5249  cres 5252  ccom 5254  wf 6026  1-1-ontowf1o 6029  cfv 6030  Basecbs 16064  0.cp0 17245  Atomscatm 35070  HLchlt 35157  LHypclh 35791  LTrncltrn 35908  trLctrl 35966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-riotaBAD 34759
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-undef 7555  df-map 8015  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34983  df-ol 34985  df-oml 34986  df-covers 35073  df-ats 35074  df-atl 35105  df-cvlat 35129  df-hlat 35158  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967
This theorem is referenced by:  trlcocnvat  36532  trlconid  36533  trljco  36548  cdlemh2  36624  cdlemh  36625
  Copyright terms: Public domain W3C validator