Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Structured version   Visualization version   GIF version

Theorem trlcoat 40747
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a 𝐴 = (Atoms‘𝐾)
trlcoat.h 𝐻 = (LHyp‘𝐾)
trlcoat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 trlcoat.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 40743 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
433expb 1120 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → (𝐹𝐺) ∈ 𝑇)
5 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2736 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
7 trlcoat.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
85, 6, 1, 2, 7trlid0b 40202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
94, 8syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
10 coass 6259 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 simpll 766 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplrl 776 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
135, 1, 2ltrn1o 40148 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15 f1ococnv1 6852 . . . . . . . . . . . 12 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1614, 15syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1716coeq1d 5846 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
18 coeq2 5843 . . . . . . . . . . 11 ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
1918adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
2010, 17, 193eqtr3a 2795 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
21 simplrr 777 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
225, 1, 2ltrn1o 40148 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2311, 21, 22syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
24 f1of 6823 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 fcoi2 6758 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
271, 2ltrncnv 40170 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2811, 12, 27syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
295, 1, 2ltrn1o 40148 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
3011, 28, 29syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6823 . . . . . . . . . 10 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6757 . . . . . . . . . 10 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3420, 26, 333eqtr3d 2779 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = 𝐹)
3534fveq2d 6885 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (𝑅𝐹))
361, 2, 7trlcnv 40189 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3711, 12, 36syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐹))
3835, 37eqtr2d 2772 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐺))
3938ex 412 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅𝐹) = (𝑅𝐺)))
409, 39sylbird 260 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) = (0.‘𝐾) → (𝑅𝐹) = (𝑅𝐺)))
4140necon3d 2954 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
42 trlcoat.a . . . . 5 𝐴 = (Atoms‘𝐾)
436, 42, 1, 2, 7trlatn0 40196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
444, 43syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
4541, 44sylibrd 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ∈ 𝐴))
46453impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   I cid 5552  ccnv 5658  cres 5661  ccom 5663  wf 6532  1-1-ontowf1o 6535  cfv 6536  Basecbs 17233  0.cp0 18438  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-undef 8277  df-map 8847  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183
This theorem is referenced by:  trlcocnvat  40748  trlconid  40749  trljco  40764  cdlemh2  40840  cdlemh  40841
  Copyright terms: Public domain W3C validator