Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Structured version   Visualization version   GIF version

Theorem trlcoat 40706
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a 𝐴 = (Atoms‘𝐾)
trlcoat.h 𝐻 = (LHyp‘𝐾)
trlcoat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 trlcoat.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 40702 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
433expb 1119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → (𝐹𝐺) ∈ 𝑇)
5 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
7 trlcoat.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
85, 6, 1, 2, 7trlid0b 40161 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
94, 8syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
10 coass 6287 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 simpll 767 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplrl 777 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
135, 1, 2ltrn1o 40107 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15 f1ococnv1 6878 . . . . . . . . . . . 12 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1614, 15syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1716coeq1d 5875 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
18 coeq2 5872 . . . . . . . . . . 11 ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
1918adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
2010, 17, 193eqtr3a 2799 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
21 simplrr 778 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
225, 1, 2ltrn1o 40107 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2311, 21, 22syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
24 f1of 6849 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 fcoi2 6784 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
271, 2ltrncnv 40129 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2811, 12, 27syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
295, 1, 2ltrn1o 40107 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
3011, 28, 29syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6849 . . . . . . . . . 10 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6783 . . . . . . . . . 10 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3420, 26, 333eqtr3d 2783 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = 𝐹)
3534fveq2d 6911 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (𝑅𝐹))
361, 2, 7trlcnv 40148 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3711, 12, 36syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐹))
3835, 37eqtr2d 2776 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐺))
3938ex 412 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅𝐹) = (𝑅𝐺)))
409, 39sylbird 260 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) = (0.‘𝐾) → (𝑅𝐹) = (𝑅𝐺)))
4140necon3d 2959 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
42 trlcoat.a . . . . 5 𝐴 = (Atoms‘𝐾)
436, 42, 1, 2, 7trlatn0 40155 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
444, 43syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
4541, 44sylibrd 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ∈ 𝐴))
46453impia 1116 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   I cid 5582  ccnv 5688  cres 5691  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  Basecbs 17245  0.cp0 18481  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  trlcocnvat  40707  trlconid  40708  trljco  40723  cdlemh2  40799  cdlemh  40800
  Copyright terms: Public domain W3C validator