Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Structured version   Visualization version   GIF version

Theorem trlcoat 37304
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a 𝐴 = (Atoms‘𝐾)
trlcoat.h 𝐻 = (LHyp‘𝐾)
trlcoat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 trlcoat.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 37300 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
433expb 1100 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → (𝐹𝐺) ∈ 𝑇)
5 eqid 2772 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2772 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
7 trlcoat.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
85, 6, 1, 2, 7trlid0b 36759 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
94, 8syldan 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
10 coass 5951 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 simpll 754 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplrl 764 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
135, 1, 2ltrn1o 36705 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1411, 12, 13syl2anc 576 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15 f1ococnv1 6466 . . . . . . . . . . . 12 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1614, 15syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1716coeq1d 5576 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
18 coeq2 5573 . . . . . . . . . . 11 ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
1918adantl 474 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
2010, 17, 193eqtr3a 2832 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
21 simplrr 765 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
225, 1, 2ltrn1o 36705 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2311, 21, 22syl2anc 576 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
24 f1of 6438 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 fcoi2 6376 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
271, 2ltrncnv 36727 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2811, 12, 27syl2anc 576 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
295, 1, 2ltrn1o 36705 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
3011, 28, 29syl2anc 576 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6438 . . . . . . . . . 10 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6375 . . . . . . . . . 10 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3420, 26, 333eqtr3d 2816 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = 𝐹)
3534fveq2d 6497 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (𝑅𝐹))
361, 2, 7trlcnv 36746 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3711, 12, 36syl2anc 576 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐹))
3835, 37eqtr2d 2809 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐺))
3938ex 405 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅𝐹) = (𝑅𝐺)))
409, 39sylbird 252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) = (0.‘𝐾) → (𝑅𝐹) = (𝑅𝐺)))
4140necon3d 2982 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
42 trlcoat.a . . . . 5 𝐴 = (Atoms‘𝐾)
436, 42, 1, 2, 7trlatn0 36753 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
444, 43syldan 582 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
4541, 44sylibrd 251 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ∈ 𝐴))
46453impia 1097 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961   I cid 5305  ccnv 5400  cres 5403  ccom 5405  wf 6178  1-1-ontowf1o 6181  cfv 6182  Basecbs 16333  0.cp0 17499  Atomscatm 35844  HLchlt 35931  LHypclh 36565  LTrncltrn 36682  trLctrl 36739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-riotaBAD 35534
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7495  df-2nd 7496  df-undef 7736  df-map 8202  df-proset 17390  df-poset 17408  df-plt 17420  df-lub 17436  df-glb 17437  df-join 17438  df-meet 17439  df-p0 17501  df-p1 17502  df-lat 17508  df-clat 17570  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080  df-lvols 36081  df-lines 36082  df-psubsp 36084  df-pmap 36085  df-padd 36377  df-lhyp 36569  df-laut 36570  df-ldil 36685  df-ltrn 36686  df-trl 36740
This theorem is referenced by:  trlcocnvat  37305  trlconid  37306  trljco  37321  cdlemh2  37397  cdlemh  37398
  Copyright terms: Public domain W3C validator