Proof of Theorem trlcoat
Step | Hyp | Ref
| Expression |
1 | | trlcoat.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | trlcoat.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
3 | 1, 2 | ltrnco 38733 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
4 | 3 | 3expb 1119 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 ∘ 𝐺) ∈ 𝑇) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
7 | | trlcoat.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
8 | 5, 6, 1, 2, 7 | trlid0b 38192 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾))) |
9 | 4, 8 | syldan 591 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾))) |
10 | | coass 6169 |
. . . . . . . . . 10
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) |
11 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
12 | | simplrl 774 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹 ∈ 𝑇) |
13 | 5, 1, 2 | ltrn1o 38138 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
14 | 11, 12, 13 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
15 | | f1ococnv1 6745 |
. . . . . . . . . . . 12
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) |
17 | 16 | coeq1d 5770 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺)) |
18 | | coeq2 5767 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) |
19 | 18 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) |
20 | 10, 17, 19 | 3eqtr3a 2802 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾
(Base‘𝐾)) ∘
𝐺) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) |
21 | | simplrr 775 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 ∈ 𝑇) |
22 | 5, 1, 2 | ltrn1o 38138 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
23 | 11, 21, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
24 | | f1of 6716 |
. . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
25 | | fcoi2 6649 |
. . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺) |
26 | 23, 24, 25 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾
(Base‘𝐾)) ∘
𝐺) = 𝐺) |
27 | 1, 2 | ltrncnv 38160 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
28 | 11, 12, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ◡𝐹 ∈ 𝑇) |
29 | 5, 1, 2 | ltrn1o 38138 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝐹 ∈ 𝑇) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
30 | 11, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
31 | | f1of 6716 |
. . . . . . . . . 10
⊢ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡𝐹:(Base‘𝐾)⟶(Base‘𝐾)) |
32 | | fcoi1 6648 |
. . . . . . . . . 10
⊢ (◡𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (◡𝐹 ∘ ( I ↾ (Base‘𝐾))) = ◡𝐹) |
33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ ( I ↾ (Base‘𝐾))) = ◡𝐹) |
34 | 20, 26, 33 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = ◡𝐹) |
35 | 34 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘𝐺) = (𝑅‘◡𝐹)) |
36 | 1, 2, 7 | trlcnv 38179 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
37 | 11, 12, 36 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
38 | 35, 37 | eqtr2d 2779 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘𝐹) = (𝑅‘𝐺)) |
39 | 38 | ex 413 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅‘𝐹) = (𝑅‘𝐺))) |
40 | 9, 39 | sylbird 259 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾) → (𝑅‘𝐹) = (𝑅‘𝐺))) |
41 | 40 | necon3d 2964 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≠ (𝑅‘𝐺) → (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) |
42 | | trlcoat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
43 | 6, 42, 1, 2, 7 | trlatn0 38186 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) |
44 | 4, 43 | syldan 591 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) |
45 | 41, 44 | sylibrd 258 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≠ (𝑅‘𝐺) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴)) |
46 | 45 | 3impia 1116 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴) |