Proof of Theorem trlcoat
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | trlcoat.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | trlcoat.t | . . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 3 | 1, 2 | ltrnco 40722 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) ∈ 𝑇) | 
| 4 | 3 | 3expb 1120 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐹 ∘ 𝐺) ∈ 𝑇) | 
| 5 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 6 |  | eqid 2736 | . . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 7 |  | trlcoat.r | . . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 8 | 5, 6, 1, 2, 7 | trlid0b 40181 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾))) | 
| 9 | 4, 8 | syldan 591 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾))) | 
| 10 |  | coass 6284 | . . . . . . . . . 10
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) | 
| 11 |  | simpll 766 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 12 |  | simplrl 776 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹 ∈ 𝑇) | 
| 13 | 5, 1, 2 | ltrn1o 40127 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 14 | 11, 12, 13 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 15 |  | f1ococnv1 6876 | . . . . . . . . . . . 12
⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ 𝐹) = ( I ↾ (Base‘𝐾))) | 
| 17 | 16 | coeq1d 5871 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺)) | 
| 18 |  | coeq2 5868 | . . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) | 
| 19 | 18 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) | 
| 20 | 10, 17, 19 | 3eqtr3a 2800 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾
(Base‘𝐾)) ∘
𝐺) = (◡𝐹 ∘ ( I ↾ (Base‘𝐾)))) | 
| 21 |  | simplrr 777 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 ∈ 𝑇) | 
| 22 | 5, 1, 2 | ltrn1o 40127 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 23 | 11, 21, 22 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 24 |  | f1of 6847 | . . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 25 |  | fcoi2 6782 | . . . . . . . . . 10
⊢ (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺) | 
| 26 | 23, 24, 25 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾
(Base‘𝐾)) ∘
𝐺) = 𝐺) | 
| 27 | 1, 2 | ltrncnv 40149 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) | 
| 28 | 11, 12, 27 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ◡𝐹 ∈ 𝑇) | 
| 29 | 5, 1, 2 | ltrn1o 40127 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ◡𝐹 ∈ 𝑇) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 30 | 11, 28, 29 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | 
| 31 |  | f1of 6847 | . . . . . . . . . 10
⊢ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡𝐹:(Base‘𝐾)⟶(Base‘𝐾)) | 
| 32 |  | fcoi1 6781 | . . . . . . . . . 10
⊢ (◡𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (◡𝐹 ∘ ( I ↾ (Base‘𝐾))) = ◡𝐹) | 
| 33 | 30, 31, 32 | 3syl 18 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (◡𝐹 ∘ ( I ↾ (Base‘𝐾))) = ◡𝐹) | 
| 34 | 20, 26, 33 | 3eqtr3d 2784 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = ◡𝐹) | 
| 35 | 34 | fveq2d 6909 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘𝐺) = (𝑅‘◡𝐹)) | 
| 36 | 1, 2, 7 | trlcnv 40168 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) | 
| 37 | 11, 12, 36 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) | 
| 38 | 35, 37 | eqtr2d 2777 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ (𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅‘𝐹) = (𝑅‘𝐺)) | 
| 39 | 38 | ex 412 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹 ∘ 𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅‘𝐹) = (𝑅‘𝐺))) | 
| 40 | 9, 39 | sylbird 260 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘(𝐹 ∘ 𝐺)) = (0.‘𝐾) → (𝑅‘𝐹) = (𝑅‘𝐺))) | 
| 41 | 40 | necon3d 2960 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≠ (𝑅‘𝐺) → (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) | 
| 42 |  | trlcoat.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 43 | 6, 42, 1, 2, 7 | trlatn0 40175 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ 𝐺) ∈ 𝑇) → ((𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) | 
| 44 | 4, 43 | syldan 591 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹 ∘ 𝐺)) ≠ (0.‘𝐾))) | 
| 45 | 41, 44 | sylibrd 259 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≠ (𝑅‘𝐺) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴)) | 
| 46 | 45 | 3impia 1117 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ 𝐺)) ∈ 𝐴) |