Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptfzsplitl | Structured version Visualization version GIF version |
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
Ref | Expression |
---|---|
gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
gsummptfzsplitl.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzsplitl | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | fzfid 13621 | . 2 ⊢ (𝜑 → (0...𝑁) ∈ Fin) | |
5 | gsummptfzsplitl.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) | |
6 | incom 4131 | . . . 4 ⊢ ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))) |
8 | 1e0p1 12408 | . . . . . 6 ⊢ 1 = (0 + 1) | |
9 | 8 | oveq1i 7265 | . . . . 5 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((0 + 1)...𝑁)) |
11 | 10 | ineq2d 4143 | . . 3 ⊢ (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁))) |
12 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
13 | elnn0uz 12552 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
14 | 13 | biimpi 215 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
15 | fzpreddisj 13234 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅) | |
16 | 12, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅) |
17 | 7, 11, 16 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ∅) |
18 | fzpred 13233 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) | |
19 | 12, 14, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
20 | uncom 4083 | . . . 4 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0}) | |
21 | 0p1e1 12025 | . . . . . 6 ⊢ (0 + 1) = 1 | |
22 | 21 | oveq1i 7265 | . . . . 5 ⊢ ((0 + 1)...𝑁) = (1...𝑁) |
23 | 22 | uneq1i 4089 | . . . 4 ⊢ (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0}) |
24 | 20, 23 | eqtri 2766 | . . 3 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0}) |
25 | 19, 24 | eqtrdi 2795 | . 2 ⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
26 | 1, 2, 3, 4, 5, 17, 25 | gsummptfidmsplit 19446 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: srgbinomlem4 19694 chfacfscmulgsum 21917 chfacfpmmulgsum 21921 cpmadugsumlemF 21933 freshmansdream 31386 |
Copyright terms: Public domain | W3C validator |