| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfzsplitl | Structured version Visualization version GIF version | ||
| Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
| Ref | Expression |
|---|---|
| gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
| gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| gsummptfzsplitl.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsummptfzsplitl | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | fzfid 13898 | . 2 ⊢ (𝜑 → (0...𝑁) ∈ Fin) | |
| 5 | gsummptfzsplitl.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) | |
| 6 | incom 4162 | . . . 4 ⊢ ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))) |
| 8 | 1e0p1 12651 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq1i 7363 | . . . . 5 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((0 + 1)...𝑁)) |
| 11 | 10 | ineq2d 4173 | . . 3 ⊢ (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁))) |
| 12 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | elnn0uz 12798 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 15 | fzpreddisj 13494 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅) | |
| 16 | 12, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅) |
| 17 | 7, 11, 16 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ∅) |
| 18 | fzpred 13493 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) | |
| 19 | 12, 14, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
| 20 | uncom 4111 | . . . 4 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0}) | |
| 21 | 0p1e1 12263 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 22 | 21 | oveq1i 7363 | . . . . 5 ⊢ ((0 + 1)...𝑁) = (1...𝑁) |
| 23 | 22 | uneq1i 4117 | . . . 4 ⊢ (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0}) |
| 24 | 20, 23 | eqtri 2752 | . . 3 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0}) |
| 25 | 19, 24 | eqtrdi 2780 | . 2 ⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
| 26 | 1, 2, 3, 4, 5, 17, 25 | gsummptfidmsplit 19827 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ∩ cin 3904 ∅c0 4286 {csn 4579 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 ℕ0cn0 12402 ℤ≥cuz 12753 ...cfz 13428 Basecbs 17138 +gcplusg 17179 Σg cgsu 17362 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-cntz 19214 df-cmn 19679 |
| This theorem is referenced by: srgbinomlem4 20132 freshmansdream 21499 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 cpmadugsumlemF 22779 |
| Copyright terms: Public domain | W3C validator |