| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfzsplitl | Structured version Visualization version GIF version | ||
| Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
| Ref | Expression |
|---|---|
| gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
| gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| gsummptfzsplitl.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsummptfzsplitl | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | fzfid 13877 | . 2 ⊢ (𝜑 → (0...𝑁) ∈ Fin) | |
| 5 | gsummptfzsplitl.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) | |
| 6 | incom 4159 | . . . 4 ⊢ ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))) |
| 8 | 1e0p1 12627 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq1i 7356 | . . . . 5 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((0 + 1)...𝑁)) |
| 11 | 10 | ineq2d 4170 | . . 3 ⊢ (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁))) |
| 12 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | elnn0uz 12774 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 15 | fzpreddisj 13470 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅) | |
| 16 | 12, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅) |
| 17 | 7, 11, 16 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ∅) |
| 18 | fzpred 13469 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) | |
| 19 | 12, 14, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
| 20 | uncom 4108 | . . . 4 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0}) | |
| 21 | 0p1e1 12239 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 22 | 21 | oveq1i 7356 | . . . . 5 ⊢ ((0 + 1)...𝑁) = (1...𝑁) |
| 23 | 22 | uneq1i 4114 | . . . 4 ⊢ (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0}) |
| 24 | 20, 23 | eqtri 2754 | . . 3 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0}) |
| 25 | 19, 24 | eqtrdi 2782 | . 2 ⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
| 26 | 1, 2, 3, 4, 5, 17, 25 | gsummptfidmsplit 19840 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 ℕ0cn0 12378 ℤ≥cuz 12729 ...cfz 13404 Basecbs 17117 +gcplusg 17158 Σg cgsu 17341 CMndccmn 19690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-cntz 19227 df-cmn 19692 |
| This theorem is referenced by: srgbinomlem4 20145 freshmansdream 21509 chfacfscmulgsum 22773 chfacfpmmulgsum 22777 cpmadugsumlemF 22789 |
| Copyright terms: Public domain | W3C validator |