| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfzsplitl | Structured version Visualization version GIF version | ||
| Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
| Ref | Expression |
|---|---|
| gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
| gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| gsummptfzsplitl.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsummptfzsplitl | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | fzfid 13996 | . 2 ⊢ (𝜑 → (0...𝑁) ∈ Fin) | |
| 5 | gsummptfzsplitl.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) | |
| 6 | incom 4189 | . . . 4 ⊢ ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))) |
| 8 | 1e0p1 12755 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq1i 7420 | . . . . 5 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((0 + 1)...𝑁)) |
| 11 | 10 | ineq2d 4200 | . . 3 ⊢ (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁))) |
| 12 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | elnn0uz 12902 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
| 15 | fzpreddisj 13595 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅) | |
| 16 | 12, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅) |
| 17 | 7, 11, 16 | 3eqtrd 2775 | . 2 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ∅) |
| 18 | fzpred 13594 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) | |
| 19 | 12, 14, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
| 20 | uncom 4138 | . . . 4 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0}) | |
| 21 | 0p1e1 12367 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 22 | 21 | oveq1i 7420 | . . . . 5 ⊢ ((0 + 1)...𝑁) = (1...𝑁) |
| 23 | 22 | uneq1i 4144 | . . . 4 ⊢ (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0}) |
| 24 | 20, 23 | eqtri 2759 | . . 3 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0}) |
| 25 | 19, 24 | eqtrdi 2787 | . 2 ⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
| 26 | 1, 2, 3, 4, 5, 17, 25 | gsummptfidmsplit 19916 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 ℕ0cn0 12506 ℤ≥cuz 12857 ...cfz 13529 Basecbs 17233 +gcplusg 17276 Σg cgsu 17459 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-gsum 17461 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-cntz 19305 df-cmn 19768 |
| This theorem is referenced by: srgbinomlem4 20194 freshmansdream 21540 chfacfscmulgsum 22803 chfacfpmmulgsum 22807 cpmadugsumlemF 22819 |
| Copyright terms: Public domain | W3C validator |