Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptfzsplitl | Structured version Visualization version GIF version |
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.) |
Ref | Expression |
---|---|
gsummptfzsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzsplit.p | ⊢ + = (+g‘𝐺) |
gsummptfzsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptfzsplit.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
gsummptfzsplitl.y | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzsplitl | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptfzsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | gsummptfzsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | fzfid 13403 | . 2 ⊢ (𝜑 → (0...𝑁) ∈ Fin) | |
5 | gsummptfzsplitl.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑌 ∈ 𝐵) | |
6 | incom 4108 | . . . 4 ⊢ ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)) | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))) |
8 | 1e0p1 12192 | . . . . . 6 ⊢ 1 = (0 + 1) | |
9 | 8 | oveq1i 7166 | . . . . 5 ⊢ (1...𝑁) = ((0 + 1)...𝑁) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (1...𝑁) = ((0 + 1)...𝑁)) |
11 | 10 | ineq2d 4119 | . . 3 ⊢ (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁))) |
12 | gsummptfzsplit.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
13 | elnn0uz 12336 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
14 | 13 | biimpi 219 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
15 | fzpreddisj 13018 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅) | |
16 | 12, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅) |
17 | 7, 11, 16 | 3eqtrd 2797 | . 2 ⊢ (𝜑 → ((1...𝑁) ∩ {0}) = ∅) |
18 | fzpred 13017 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) | |
19 | 12, 14, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁))) |
20 | uncom 4060 | . . . 4 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0}) | |
21 | 0p1e1 11809 | . . . . . 6 ⊢ (0 + 1) = 1 | |
22 | 21 | oveq1i 7166 | . . . . 5 ⊢ ((0 + 1)...𝑁) = (1...𝑁) |
23 | 22 | uneq1i 4066 | . . . 4 ⊢ (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0}) |
24 | 20, 23 | eqtri 2781 | . . 3 ⊢ ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0}) |
25 | 19, 24 | eqtrdi 2809 | . 2 ⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
26 | 1, 2, 3, 4, 5, 17, 25 | gsummptfidmsplit 19131 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∪ cun 3858 ∩ cin 3859 ∅c0 4227 {csn 4525 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 0cc0 10588 1c1 10589 + caddc 10591 ℕ0cn0 11947 ℤ≥cuz 12295 ...cfz 12952 Basecbs 16554 +gcplusg 16636 Σg cgsu 16785 CMndccmn 18986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-0g 16786 df-gsum 16787 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-submnd 18036 df-cntz 18527 df-cmn 18988 |
This theorem is referenced by: srgbinomlem4 19374 chfacfscmulgsum 21573 chfacfpmmulgsum 21577 cpmadugsumlemF 21589 freshmansdream 31022 |
Copyright terms: Public domain | W3C validator |