MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzsplitl Structured version   Visualization version   GIF version

Theorem gsummptfzsplitl 19900
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
gsummptfzsplit.b 𝐵 = (Base‘𝐺)
gsummptfzsplit.p + = (+g𝐺)
gsummptfzsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfzsplit.n (𝜑𝑁 ∈ ℕ0)
gsummptfzsplitl.y ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
Assertion
Ref Expression
gsummptfzsplitl (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfzsplitl
StepHypRef Expression
1 gsummptfzsplit.b . 2 𝐵 = (Base‘𝐺)
2 gsummptfzsplit.p . 2 + = (+g𝐺)
3 gsummptfzsplit.g . 2 (𝜑𝐺 ∈ CMnd)
4 fzfid 13974 . 2 (𝜑 → (0...𝑁) ∈ Fin)
5 gsummptfzsplitl.y . 2 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
6 incom 4199 . . . 4 ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))
76a1i 11 . . 3 (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)))
8 1e0p1 12752 . . . . . 6 1 = (0 + 1)
98oveq1i 7429 . . . . 5 (1...𝑁) = ((0 + 1)...𝑁)
109a1i 11 . . . 4 (𝜑 → (1...𝑁) = ((0 + 1)...𝑁))
1110ineq2d 4210 . . 3 (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁)))
12 gsummptfzsplit.n . . . 4 (𝜑𝑁 ∈ ℕ0)
13 elnn0uz 12900 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
1413biimpi 215 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
15 fzpreddisj 13585 . . . 4 (𝑁 ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
1612, 14, 153syl 18 . . 3 (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
177, 11, 163eqtrd 2769 . 2 (𝜑 → ((1...𝑁) ∩ {0}) = ∅)
18 fzpred 13584 . . . 4 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
1912, 14, 183syl 18 . . 3 (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
20 uncom 4150 . . . 4 ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0})
21 0p1e1 12367 . . . . . 6 (0 + 1) = 1
2221oveq1i 7429 . . . . 5 ((0 + 1)...𝑁) = (1...𝑁)
2322uneq1i 4156 . . . 4 (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0})
2420, 23eqtri 2753 . . 3 ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0})
2519, 24eqtrdi 2781 . 2 (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0}))
261, 2, 3, 4, 5, 17, 25gsummptfidmsplit 19897 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cun 3942  cin 3943  c0 4322  {csn 4630  cmpt 5232  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143  0cn0 12505  cuz 12855  ...cfz 13519  Basecbs 17183  +gcplusg 17236   Σg cgsu 17425  CMndccmn 19747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-0g 17426  df-gsum 17427  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-cntz 19280  df-cmn 19749
This theorem is referenced by:  srgbinomlem4  20181  freshmansdream  21525  chfacfscmulgsum  22806  chfacfpmmulgsum  22810  cpmadugsumlemF  22822
  Copyright terms: Public domain W3C validator