MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzsplitl Structured version   Visualization version   GIF version

Theorem gsummptfzsplitl 19449
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
gsummptfzsplit.b 𝐵 = (Base‘𝐺)
gsummptfzsplit.p + = (+g𝐺)
gsummptfzsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfzsplit.n (𝜑𝑁 ∈ ℕ0)
gsummptfzsplitl.y ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
Assertion
Ref Expression
gsummptfzsplitl (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfzsplitl
StepHypRef Expression
1 gsummptfzsplit.b . 2 𝐵 = (Base‘𝐺)
2 gsummptfzsplit.p . 2 + = (+g𝐺)
3 gsummptfzsplit.g . 2 (𝜑𝐺 ∈ CMnd)
4 fzfid 13621 . 2 (𝜑 → (0...𝑁) ∈ Fin)
5 gsummptfzsplitl.y . 2 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
6 incom 4131 . . . 4 ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))
76a1i 11 . . 3 (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)))
8 1e0p1 12408 . . . . . 6 1 = (0 + 1)
98oveq1i 7265 . . . . 5 (1...𝑁) = ((0 + 1)...𝑁)
109a1i 11 . . . 4 (𝜑 → (1...𝑁) = ((0 + 1)...𝑁))
1110ineq2d 4143 . . 3 (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁)))
12 gsummptfzsplit.n . . . 4 (𝜑𝑁 ∈ ℕ0)
13 elnn0uz 12552 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
1413biimpi 215 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
15 fzpreddisj 13234 . . . 4 (𝑁 ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
1612, 14, 153syl 18 . . 3 (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
177, 11, 163eqtrd 2782 . 2 (𝜑 → ((1...𝑁) ∩ {0}) = ∅)
18 fzpred 13233 . . . 4 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
1912, 14, 183syl 18 . . 3 (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
20 uncom 4083 . . . 4 ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0})
21 0p1e1 12025 . . . . . 6 (0 + 1) = 1
2221oveq1i 7265 . . . . 5 ((0 + 1)...𝑁) = (1...𝑁)
2322uneq1i 4089 . . . 4 (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0})
2420, 23eqtri 2766 . . 3 ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0})
2519, 24eqtrdi 2795 . 2 (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0}))
261, 2, 3, 4, 5, 17, 25gsummptfidmsplit 19446 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  cin 3882  c0 4253  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  cuz 12511  ...cfz 13168  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-cmn 19303
This theorem is referenced by:  srgbinomlem4  19694  chfacfscmulgsum  21917  chfacfpmmulgsum  21921  cpmadugsumlemF  21933  freshmansdream  31386
  Copyright terms: Public domain W3C validator