![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iimulcn | Structured version Visualization version GIF version |
Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014.) |
Ref | Expression |
---|---|
iimulcn | ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2780 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | dfii3 23209 | . . . . 5 ⊢ II = ((TopOpen‘ℂfld) ↾t (0[,]1)) |
3 | 1 | cnfldtopon 23109 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
5 | unitssre 12707 | . . . . . . 7 ⊢ (0[,]1) ⊆ ℝ | |
6 | ax-resscn 10398 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 3869 | . . . . . 6 ⊢ (0[,]1) ⊆ ℂ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → (0[,]1) ⊆ ℂ) |
9 | ax-mulf 10421 | . . . . . . . . 9 ⊢ · :(ℂ × ℂ)⟶ℂ | |
10 | ffn 6349 | . . . . . . . . 9 ⊢ ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 ⊢ · Fn (ℂ × ℂ) |
12 | fnov 7104 | . . . . . . . 8 ⊢ ( · Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))) | |
13 | 11, 12 | mpbi 222 | . . . . . . 7 ⊢ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
14 | 1 | mulcn 23193 | . . . . . . 7 ⊢ · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
15 | 13, 14 | eqeltrri 2865 | . . . . . 6 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
16 | 15 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
17 | 2, 4, 8, 2, 4, 8, 16 | cnmpt2res 22004 | . . . 4 ⊢ (⊤ → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld))) |
18 | 17 | mptru 1515 | . . 3 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) |
19 | iimulcl 23259 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝑥 · 𝑦) ∈ (0[,]1)) | |
20 | 19 | rgen2a 3178 | . . . . 5 ⊢ ∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) |
21 | eqid 2780 | . . . . . . 7 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) | |
22 | 21 | fmpo 7580 | . . . . . 6 ⊢ (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1)) |
23 | frn 6355 | . . . . . 6 ⊢ ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1)) | |
24 | 22, 23 | sylbi 209 | . . . . 5 ⊢ (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1)) |
25 | 20, 24 | ax-mp 5 | . . . 4 ⊢ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1) |
26 | cnrest2 21613 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))) | |
27 | 3, 25, 7, 26 | mp3an 1441 | . . 3 ⊢ ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))) |
28 | 18, 27 | mpbi 222 | . 2 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) |
29 | 2 | oveq2i 6993 | . 2 ⊢ ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))) |
30 | 28, 29 | eleqtrri 2867 | 1 ⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 ⊤wtru 1509 ∈ wcel 2051 ∀wral 3090 ⊆ wss 3831 × cxp 5409 ran crn 5412 Fn wfn 6188 ⟶wf 6189 ‘cfv 6193 (class class class)co 6982 ∈ cmpo 6984 ℂcc 10339 ℝcr 10340 0cc0 10341 1c1 10342 · cmul 10346 [,]cicc 12563 ↾t crest 16556 TopOpenctopn 16557 ℂfldccnfld 20262 TopOnctopon 21237 Cn ccn 21551 ×t ctx 21887 IIcii 23201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-er 8095 df-map 8214 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-fi 8676 df-sup 8707 df-inf 8708 df-oi 8775 df-card 9168 df-cda 9394 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-icc 12567 df-fz 12715 df-fzo 12856 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-rest 16558 df-topn 16559 df-0g 16577 df-gsum 16578 df-topgen 16579 df-pt 16580 df-prds 16583 df-xrs 16637 df-qtop 16642 df-imas 16643 df-xps 16645 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-submnd 17816 df-mulg 18024 df-cntz 18230 df-cmn 18680 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-cnfld 20263 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cn 21554 df-cnp 21555 df-tx 21889 df-hmeo 22082 df-xms 22648 df-ms 22649 df-tms 22650 df-ii 23203 |
This theorem is referenced by: pcorevlem 23348 |
Copyright terms: Public domain | W3C validator |