MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcn Structured version   Visualization version   GIF version

Theorem iimulcn 24988
Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014.) Avoid ax-mulf 11266. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
iimulcn (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Distinct variable group:   𝑥,𝑦

Proof of Theorem iimulcn
StepHypRef Expression
1 eqid 2740 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21dfii3 24930 . . . . 5 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
31cnfldtopon 24826 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
43a1i 11 . . . . 5 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
5 unitsscn 13562 . . . . . 6 (0[,]1) ⊆ ℂ
65a1i 11 . . . . 5 (⊤ → (0[,]1) ⊆ ℂ)
71mpomulcn 24912 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
87a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92, 4, 6, 2, 4, 6, 8cnmpt2res 23708 . . . 4 (⊤ → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
109mptru 1544 . . 3 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld))
11 iimulcl 24987 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝑥 · 𝑦) ∈ (0[,]1))
1211rgen2 3205 . . . . 5 𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1)
13 eqid 2740 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦))
1413fmpo 8111 . . . . . 6 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1))
15 frn 6756 . . . . . 6 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
1614, 15sylbi 217 . . . . 5 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
1712, 16ax-mp 5 . . . 4 ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1)
18 cnrest2 23317 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
193, 17, 5, 18mp3an 1461 . . 3 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2010, 19mpbi 230 . 2 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
212oveq2i 7461 . 2 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
2220, 21eleqtrri 2843 1 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wtru 1538  wcel 2108  wral 3067  wss 3976   × cxp 5698  ran crn 5701  wf 6571  cfv 6575  (class class class)co 7450  cmpo 7452  cc 11184  0cc0 11186  1c1 11187   · cmul 11191  [,]cicc 13412  t crest 17482  TopOpenctopn 17483  fldccnfld 21389  TopOnctopon 22939   Cn ccn 23255   ×t ctx 23591  IIcii 24922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-supp 8204  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-fsupp 9434  df-fi 9482  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-icc 13416  df-fz 13570  df-fzo 13714  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-sca 17329  df-vsca 17330  df-ip 17331  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-hom 17337  df-cco 17338  df-rest 17484  df-topn 17485  df-0g 17503  df-gsum 17504  df-topgen 17505  df-pt 17506  df-prds 17509  df-xrs 17564  df-qtop 17569  df-imas 17570  df-xps 17572  df-mre 17646  df-mrc 17647  df-acs 17649  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-mulg 19110  df-cntz 19359  df-cmn 19826  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-mopn 21385  df-cnfld 21390  df-top 22923  df-topon 22940  df-topsp 22962  df-bases 22976  df-cn 23258  df-cnp 23259  df-tx 23593  df-hmeo 23786  df-xms 24353  df-ms 24354  df-tms 24355  df-ii 24924
This theorem is referenced by:  pcorevlem  25080
  Copyright terms: Public domain W3C validator