MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcn Structured version   Visualization version   GIF version

Theorem iimulcn 23260
Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014.)
Assertion
Ref Expression
iimulcn (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Distinct variable group:   𝑥,𝑦

Proof of Theorem iimulcn
StepHypRef Expression
1 eqid 2780 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21dfii3 23209 . . . . 5 II = ((TopOpen‘ℂfld) ↾t (0[,]1))
31cnfldtopon 23109 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
43a1i 11 . . . . 5 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
5 unitssre 12707 . . . . . . 7 (0[,]1) ⊆ ℝ
6 ax-resscn 10398 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3869 . . . . . 6 (0[,]1) ⊆ ℂ
87a1i 11 . . . . 5 (⊤ → (0[,]1) ⊆ ℂ)
9 ax-mulf 10421 . . . . . . . . 9 · :(ℂ × ℂ)⟶ℂ
10 ffn 6349 . . . . . . . . 9 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
119, 10ax-mp 5 . . . . . . . 8 · Fn (ℂ × ℂ)
12 fnov 7104 . . . . . . . 8 ( · Fn (ℂ × ℂ) ↔ · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)))
1311, 12mpbi 222 . . . . . . 7 · = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
141mulcn 23193 . . . . . . 7 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1513, 14eqeltrri 2865 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1615a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
172, 4, 8, 2, 4, 8, 16cnmpt2res 22004 . . . 4 (⊤ → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)))
1817mptru 1515 . . 3 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld))
19 iimulcl 23259 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) → (𝑥 · 𝑦) ∈ (0[,]1))
2019rgen2a 3178 . . . . 5 𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1)
21 eqid 2780 . . . . . . 7 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦))
2221fmpo 7580 . . . . . 6 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1))
23 frn 6355 . . . . . 6 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)):((0[,]1) × (0[,]1))⟶(0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
2422, 23sylbi 209 . . . . 5 (∀𝑥 ∈ (0[,]1)∀𝑦 ∈ (0[,]1)(𝑥 · 𝑦) ∈ (0[,]1) → ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1))
2520, 24ax-mp 5 . . . 4 ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1)
26 cnrest2 21613 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))))
273, 25, 7, 26mp3an 1441 . . 3 ((𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn (TopOpen‘ℂfld)) ↔ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1))))
2818, 27mpbi 222 . 2 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
292oveq2i 6993 . 2 ((II ×t II) Cn II) = ((II ×t II) Cn ((TopOpen‘ℂfld) ↾t (0[,]1)))
3028, 29eleqtrri 2867 1 (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1508  wtru 1509  wcel 2051  wral 3090  wss 3831   × cxp 5409  ran crn 5412   Fn wfn 6188  wf 6189  cfv 6193  (class class class)co 6982  cmpo 6984  cc 10339  cr 10340  0cc0 10341  1c1 10342   · cmul 10346  [,]cicc 12563  t crest 16556  TopOpenctopn 16557  fldccnfld 20262  TopOnctopon 21237   Cn ccn 21551   ×t ctx 21887  IIcii 23201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-icc 12567  df-fz 12715  df-fzo 12856  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cn 21554  df-cnp 21555  df-tx 21889  df-hmeo 22082  df-xms 22648  df-ms 22649  df-tms 22650  df-ii 23203
This theorem is referenced by:  pcorevlem  23348
  Copyright terms: Public domain W3C validator