Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem2 Structured version   Visualization version   GIF version

Theorem lcmineqlem2 39318
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem2.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem2.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem2.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem2.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem2
StepHypRef Expression
1 lcmineqlem2.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem2.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem2.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem2.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem1 39317 . 2 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
6 eqid 2798 . . 3 (0[,]1) = (0[,]1)
7 fzfid 13336 . . 3 (𝜑 → (0...(𝑁𝑀)) ∈ Fin)
8 0red 10633 . . 3 (𝜑 → 0 ∈ ℝ)
9 1red 10631 . . 3 (𝜑 → 1 ∈ ℝ)
10 unitsscn 12878 . . . . 5 (0[,]1) ⊆ ℂ
11 resmpt 5872 . . . . 5 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))))
1210, 11ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))
13 nnm1nn0 11926 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
14 expcncf 23531 . . . . . 6 ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
153, 13, 143syl 18 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
16 rescncf 23502 . . . . . 6 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
1710, 16ax-mp 5 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
1815, 17syl 17 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
1912, 18eqeltrrid 2895 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ))
20 elfznn0 12995 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
21 neg1cn 11739 . . . . . . 7 -1 ∈ ℂ
22 expcl 13443 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2321, 22mpan 689 . . . . . 6 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
2420, 23syl 17 . . . . 5 (𝑘 ∈ (0...(𝑁𝑀)) → (-1↑𝑘) ∈ ℂ)
2524adantl 485 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
263nnnn0d 11943 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
272nnnn0d 11943 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
28 nn0sub 11935 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
2926, 27, 28syl2anc 587 . . . . . . 7 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
304, 29mpbid 235 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
31 nn0z 11993 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
3220, 31syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
33 bccl 13678 . . . . . . 7 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3432, 33sylan2 595 . . . . . 6 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3530, 34sylan 583 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3635nn0cnd 11945 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
3725, 36mulcld 10650 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((-1↑𝑘) · ((𝑁𝑀)C𝑘)) ∈ ℂ)
38 resmpt 5872 . . . . . 6 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)))
3910, 38ax-mp 5 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘))
40 expcncf 23531 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
4120, 40syl 17 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
42 rescncf 23502 . . . . . . 7 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
4310, 42ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
4441, 43syl 17 . . . . 5 (𝑘 ∈ (0...(𝑁𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
4539, 44eqeltrrid 2895 . . . 4 (𝑘 ∈ (0...(𝑁𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)) ∈ ((0[,]1)–cn→ℂ))
4645adantl 485 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)) ∈ ((0[,]1)–cn→ℂ))
476, 7, 8, 9, 19, 37, 463factsumint 39313 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
485, 47eqtrd 2833 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881   class class class wbr 5030  cmpt 5110  cres 5521  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cle 10665  cmin 10859  -cneg 10860  cn 11625  0cn0 11885  cz 11969  [,]cicc 12729  ...cfz 12885  cexp 13425  Ccbc 13658  Σcsu 15034  cnccncf 23481  citg 24222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274
This theorem is referenced by:  lcmineqlem3  39319
  Copyright terms: Public domain W3C validator