| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem2 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem2.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem2.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem2.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem2.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem2 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem2.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem2.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem2.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem1 42061 | . 2 ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) |
| 6 | eqid 2731 | . . 3 ⊢ (0[,]1) = (0[,]1) | |
| 7 | fzfid 13877 | . . 3 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
| 8 | 0red 11112 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 9 | 1red 11110 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 10 | unitsscn 13397 | . . . . 5 ⊢ (0[,]1) ⊆ ℂ | |
| 11 | resmpt 5986 | . . . . 5 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) |
| 13 | nnm1nn0 12419 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 14 | expcncf 24845 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) | |
| 15 | rescncf 24815 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 17 | 3, 13, 14, 16 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 18 | 12, 17 | eqeltrrid 2836 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ)) |
| 19 | elfznn0 13517 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 20 | neg1cn 12107 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 21 | expcl 13983 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
| 22 | 20, 21 | mpan 690 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ) |
| 23 | 19, 22 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
| 25 | 3 | nnnn0d 12439 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 26 | 2 | nnnn0d 12439 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 27 | nn0sub 12428 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
| 29 | 4, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
| 30 | nn0z 12490 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 31 | 19, 30 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
| 32 | bccl 14226 | . . . . . . 7 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) | |
| 33 | 31, 32 | sylan2 593 | . . . . . 6 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 34 | 29, 33 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 35 | 34 | nn0cnd 12441 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 36 | 24, 35 | mulcld 11129 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
| 37 | resmpt 5986 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘))) | |
| 38 | 10, 37 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) |
| 39 | expcncf 24845 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) | |
| 40 | 19, 39 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 41 | rescncf 24815 | . . . . . . 7 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 42 | 10, 41 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 43 | 40, 42 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 44 | 38, 43 | eqeltrrid 2836 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 45 | 44 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 46 | 6, 7, 8, 9, 18, 36, 45 | 3factsumint 42057 | . 2 ⊢ (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 47 | 5, 46 | eqtrd 2766 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ↾ cres 5618 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 · cmul 11008 ≤ cle 11144 − cmin 11341 -cneg 11342 ℕcn 12122 ℕ0cn0 12378 ℤcz 12465 [,]cicc 13245 ...cfz 13404 ↑cexp 13965 Ccbc 14206 Σcsu 15590 –cn→ccncf 24794 ∫citg 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cn 23140 df-cnp 23141 df-cmp 23300 df-tx 23475 df-hmeo 23668 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-ovol 25390 df-vol 25391 df-mbf 25545 df-itg1 25546 df-itg2 25547 df-ibl 25548 df-itg 25549 df-0p 25596 |
| This theorem is referenced by: lcmineqlem3 42063 |
| Copyright terms: Public domain | W3C validator |