![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem2 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmineqlem2.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem2.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem2.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem2.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem2 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem2.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem2.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem2.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem1 40486 | . 2 ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) |
6 | eqid 2736 | . . 3 ⊢ (0[,]1) = (0[,]1) | |
7 | fzfid 13878 | . . 3 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
8 | 0red 11158 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
9 | 1red 11156 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
10 | unitsscn 13417 | . . . . 5 ⊢ (0[,]1) ⊆ ℂ | |
11 | resmpt 5991 | . . . . 5 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) |
13 | nnm1nn0 12454 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
14 | expcncf 24289 | . . . . . 6 ⊢ ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) | |
15 | 3, 13, 14 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) |
16 | rescncf 24260 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
17 | 10, 16 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
18 | 15, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
19 | 12, 18 | eqeltrrid 2843 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ)) |
20 | elfznn0 13534 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
21 | neg1cn 12267 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
22 | expcl 13985 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
23 | 21, 22 | mpan 688 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ) |
24 | 20, 23 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
25 | 24 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
26 | 3 | nnnn0d 12473 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
27 | 2 | nnnn0d 12473 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
28 | nn0sub 12463 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
29 | 26, 27, 28 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
30 | 4, 29 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
31 | nn0z 12524 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
32 | 20, 31 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
33 | bccl 14222 | . . . . . . 7 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) | |
34 | 32, 33 | sylan2 593 | . . . . . 6 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
35 | 30, 34 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
36 | 35 | nn0cnd 12475 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
37 | 25, 36 | mulcld 11175 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
38 | resmpt 5991 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘))) | |
39 | 10, 38 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) |
40 | expcncf 24289 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) | |
41 | 20, 40 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
42 | rescncf 24260 | . . . . . . 7 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
43 | 10, 42 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
44 | 41, 43 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
45 | 39, 44 | eqeltrrid 2843 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
46 | 45 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
47 | 6, 7, 8, 9, 19, 37, 46 | 3factsumint 40482 | . 2 ⊢ (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
48 | 5, 47 | eqtrd 2776 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 class class class wbr 5105 ↦ cmpt 5188 ↾ cres 5635 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 · cmul 11056 ≤ cle 11190 − cmin 11385 -cneg 11386 ℕcn 12153 ℕ0cn0 12413 ℤcz 12499 [,]cicc 13267 ...cfz 13424 ↑cexp 13967 Ccbc 14202 Σcsu 15570 –cn→ccncf 24239 ∫citg 24982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cn 22578 df-cnp 22579 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-ovol 24828 df-vol 24829 df-mbf 24983 df-itg1 24984 df-itg2 24985 df-ibl 24986 df-itg 24987 df-0p 25034 |
This theorem is referenced by: lcmineqlem3 40488 |
Copyright terms: Public domain | W3C validator |