Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem2 Structured version   Visualization version   GIF version

Theorem lcmineqlem2 42025
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.)
Hypotheses
Ref Expression
lcmineqlem2.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem2.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem2.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem2.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem2 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
Distinct variable groups:   𝑘,𝑀,𝑥   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑘)

Proof of Theorem lcmineqlem2
StepHypRef Expression
1 lcmineqlem2.1 . . 3 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem2.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem2.3 . . 3 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem2.4 . . 3 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem1 42024 . 2 (𝜑𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥)
6 eqid 2730 . . 3 (0[,]1) = (0[,]1)
7 fzfid 13945 . . 3 (𝜑 → (0...(𝑁𝑀)) ∈ Fin)
8 0red 11184 . . 3 (𝜑 → 0 ∈ ℝ)
9 1red 11182 . . 3 (𝜑 → 1 ∈ ℝ)
10 unitsscn 13468 . . . . 5 (0[,]1) ⊆ ℂ
11 resmpt 6011 . . . . 5 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))))
1210, 11ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))
13 nnm1nn0 12490 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
14 expcncf 24827 . . . . 5 ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ))
15 rescncf 24797 . . . . . 6 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
1610, 15ax-mp 5 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
173, 13, 14, 164syl 19 . . . 4 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
1812, 17eqeltrrid 2834 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ))
19 elfznn0 13588 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
20 neg1cn 12178 . . . . . . 7 -1 ∈ ℂ
21 expcl 14051 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2220, 21mpan 690 . . . . . 6 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ)
2319, 22syl 17 . . . . 5 (𝑘 ∈ (0...(𝑁𝑀)) → (-1↑𝑘) ∈ ℂ)
2423adantl 481 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
253nnnn0d 12510 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
262nnnn0d 12510 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
27 nn0sub 12499 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
2825, 26, 27syl2anc 584 . . . . . . 7 (𝜑 → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
294, 28mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ0)
30 nn0z 12561 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
3119, 30syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
32 bccl 14294 . . . . . . 7 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3331, 32sylan2 593 . . . . . 6 (((𝑁𝑀) ∈ ℕ0𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3429, 33sylan 580 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℕ0)
3534nn0cnd 12512 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
3624, 35mulcld 11201 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((-1↑𝑘) · ((𝑁𝑀)C𝑘)) ∈ ℂ)
37 resmpt 6011 . . . . . 6 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)))
3810, 37ax-mp 5 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘))
39 expcncf 24827 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
4019, 39syl 17 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ))
41 rescncf 24797 . . . . . . 7 ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
4210, 41ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
4340, 42syl 17 . . . . 5 (𝑘 ∈ (0...(𝑁𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
4438, 43eqeltrrid 2834 . . . 4 (𝑘 ∈ (0...(𝑁𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)) ∈ ((0[,]1)–cn→ℂ))
4544adantl 481 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥𝑘)) ∈ ((0[,]1)–cn→ℂ))
466, 7, 8, 9, 18, 36, 453factsumint 42020 . 2 (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (𝑥𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
475, 46eqtrd 2765 1 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥𝑘)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110  cmpt 5191  cres 5643  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  cle 11216  cmin 11412  -cneg 11413  cn 12193  0cn0 12449  cz 12536  [,]cicc 13316  ...cfz 13475  cexp 14033  Ccbc 14274  Σcsu 15659  cnccncf 24776  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578
This theorem is referenced by:  lcmineqlem3  42026
  Copyright terms: Public domain W3C validator