![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem2 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmineqlem2.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem2.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem2.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem2.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem2 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem2.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem2.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem2.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem1 42011 | . 2 ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) |
6 | eqid 2735 | . . 3 ⊢ (0[,]1) = (0[,]1) | |
7 | fzfid 14011 | . . 3 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
8 | 0red 11262 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
9 | 1red 11260 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
10 | unitsscn 13537 | . . . . 5 ⊢ (0[,]1) ⊆ ℂ | |
11 | resmpt 6057 | . . . . 5 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) |
13 | nnm1nn0 12565 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
14 | expcncf 24967 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) | |
15 | rescncf 24937 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
17 | 3, 13, 14, 16 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
18 | 12, 17 | eqeltrrid 2844 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ)) |
19 | elfznn0 13657 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
20 | neg1cn 12378 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
21 | expcl 14117 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
22 | 20, 21 | mpan 690 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ) |
23 | 19, 22 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
25 | 3 | nnnn0d 12585 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
26 | 2 | nnnn0d 12585 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
27 | nn0sub 12574 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
28 | 25, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
29 | 4, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
30 | nn0z 12636 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
31 | 19, 30 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
32 | bccl 14358 | . . . . . . 7 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) | |
33 | 31, 32 | sylan2 593 | . . . . . 6 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
34 | 29, 33 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
35 | 34 | nn0cnd 12587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
36 | 24, 35 | mulcld 11279 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
37 | resmpt 6057 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘))) | |
38 | 10, 37 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) |
39 | expcncf 24967 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) | |
40 | 19, 39 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
41 | rescncf 24937 | . . . . . . 7 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
42 | 10, 41 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
43 | 40, 42 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
44 | 38, 43 | eqeltrrid 2844 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
45 | 44 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
46 | 6, 7, 8, 9, 18, 36, 45 | 3factsumint 42007 | . 2 ⊢ (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
47 | 5, 46 | eqtrd 2775 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ↾ cres 5691 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 · cmul 11158 ≤ cle 11294 − cmin 11490 -cneg 11491 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 [,]cicc 13387 ...cfz 13544 ↑cexp 14099 Ccbc 14338 Σcsu 15719 –cn→ccncf 24916 ∫citg 25667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 |
This theorem is referenced by: lcmineqlem3 42013 |
Copyright terms: Public domain | W3C validator |