| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem2 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem2.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem2.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem2.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem2.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem2 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem2.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem2.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem2.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem1 42002 | . 2 ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) |
| 6 | eqid 2729 | . . 3 ⊢ (0[,]1) = (0[,]1) | |
| 7 | fzfid 13898 | . . 3 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
| 8 | 0red 11137 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 9 | 1red 11135 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 10 | unitsscn 13421 | . . . . 5 ⊢ (0[,]1) ⊆ ℂ | |
| 11 | resmpt 5992 | . . . . 5 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) |
| 13 | nnm1nn0 12443 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 14 | expcncf 24836 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) | |
| 15 | rescncf 24806 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 17 | 3, 13, 14, 16 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 18 | 12, 17 | eqeltrrid 2833 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ)) |
| 19 | elfznn0 13541 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 20 | neg1cn 12131 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 21 | expcl 14004 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
| 22 | 20, 21 | mpan 690 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ) |
| 23 | 19, 22 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
| 25 | 3 | nnnn0d 12463 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 26 | 2 | nnnn0d 12463 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 27 | nn0sub 12452 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
| 29 | 4, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
| 30 | nn0z 12514 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 31 | 19, 30 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
| 32 | bccl 14247 | . . . . . . 7 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) | |
| 33 | 31, 32 | sylan2 593 | . . . . . 6 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 34 | 29, 33 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 35 | 34 | nn0cnd 12465 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 36 | 24, 35 | mulcld 11154 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
| 37 | resmpt 5992 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘))) | |
| 38 | 10, 37 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) |
| 39 | expcncf 24836 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) | |
| 40 | 19, 39 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 41 | rescncf 24806 | . . . . . . 7 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 42 | 10, 41 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 43 | 40, 42 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 44 | 38, 43 | eqeltrrid 2833 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 45 | 44 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 46 | 6, 7, 8, 9, 18, 36, 45 | 3factsumint 41998 | . 2 ⊢ (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 47 | 5, 46 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5625 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 ≤ cle 11169 − cmin 11365 -cneg 11366 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 [,]cicc 13269 ...cfz 13428 ↑cexp 13986 Ccbc 14227 Σcsu 15611 –cn→ccncf 24785 ∫citg 25535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ovol 25381 df-vol 25382 df-mbf 25536 df-itg1 25537 df-itg2 25538 df-ibl 25539 df-itg 25540 df-0p 25587 |
| This theorem is referenced by: lcmineqlem3 42004 |
| Copyright terms: Public domain | W3C validator |