| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem2 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem2.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem2.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem2.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem2.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem2 | ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem2.1 | . . 3 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem2.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem2.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem1 42024 | . 2 ⊢ (𝜑 → 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥) |
| 6 | eqid 2730 | . . 3 ⊢ (0[,]1) = (0[,]1) | |
| 7 | fzfid 13945 | . . 3 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
| 8 | 0red 11184 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 9 | 1red 11182 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 10 | unitsscn 13468 | . . . . 5 ⊢ (0[,]1) ⊆ ℂ | |
| 11 | resmpt 6011 | . . . . 5 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1)))) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) |
| 13 | nnm1nn0 12490 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0) | |
| 14 | expcncf 24827 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ)) | |
| 15 | rescncf 24797 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 16 | 10, 15 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 17 | 3, 13, 14, 16 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 − 1))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 18 | 12, 17 | eqeltrrid 2834 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ (𝑥↑(𝑀 − 1))) ∈ ((0[,]1)–cn→ℂ)) |
| 19 | elfznn0 13588 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 20 | neg1cn 12178 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 21 | expcl 14051 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
| 22 | 20, 21 | mpan 690 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℂ) |
| 23 | 19, 22 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
| 25 | 3 | nnnn0d 12510 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 26 | 2 | nnnn0d 12510 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 27 | nn0sub 12499 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) |
| 29 | 4, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
| 30 | nn0z 12561 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 31 | 19, 30 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) |
| 32 | bccl 14294 | . . . . . . 7 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) | |
| 33 | 31, 32 | sylan2 593 | . . . . . 6 ⊢ (((𝑁 − 𝑀) ∈ ℕ0 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 34 | 29, 33 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ0) |
| 35 | 34 | nn0cnd 12512 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 36 | 24, 35 | mulcld 11201 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
| 37 | resmpt 6011 | . . . . . 6 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘))) | |
| 38 | 10, 37 | ax-mp 5 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) |
| 39 | expcncf 24827 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) | |
| 40 | 19, 39 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ)) |
| 41 | rescncf 24797 | . . . . . . 7 ⊢ ((0[,]1) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))) | |
| 42 | 10, 41 | ax-mp 5 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 43 | 40, 42 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑘)) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)) |
| 44 | 38, 43 | eqeltrrid 2834 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 45 | 44 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑥 ∈ (0[,]1) ↦ (𝑥↑𝑘)) ∈ ((0[,]1)–cn→ℂ)) |
| 46 | 6, 7, 8, 9, 18, 36, 45 | 3factsumint 42020 | . 2 ⊢ (𝜑 → ∫(0[,]1)((𝑥↑(𝑀 − 1)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (𝑥↑𝑘))) d𝑥 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| 47 | 5, 46 | eqtrd 2765 | 1 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ∫(0[,]1)((𝑥↑(𝑀 − 1)) · (𝑥↑𝑘)) d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ↾ cres 5643 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 ≤ cle 11216 − cmin 11412 -cneg 11413 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 [,]cicc 13316 ...cfz 13475 ↑cexp 14033 Ccbc 14274 Σcsu 15659 –cn→ccncf 24776 ∫citg 25526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-ibl 25530 df-itg 25531 df-0p 25578 |
| This theorem is referenced by: lcmineqlem3 42026 |
| Copyright terms: Public domain | W3C validator |