![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xkotopon | Structured version Visualization version GIF version |
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
xkouni.1 | β’ π½ = (π βko π ) |
Ref | Expression |
---|---|
xkotopon | β’ ((π β Top β§ π β Top) β π½ β (TopOnβ(π Cn π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkouni.1 | . . 3 β’ π½ = (π βko π ) | |
2 | xkotop 23092 | . . 3 β’ ((π β Top β§ π β Top) β (π βko π ) β Top) | |
3 | 1, 2 | eqeltrid 2838 | . 2 β’ ((π β Top β§ π β Top) β π½ β Top) |
4 | 1 | xkouni 23103 | . 2 β’ ((π β Top β§ π β Top) β (π Cn π) = βͺ π½) |
5 | istopon 22414 | . 2 β’ (π½ β (TopOnβ(π Cn π)) β (π½ β Top β§ (π Cn π) = βͺ π½)) | |
6 | 3, 4, 5 | sylanbrc 584 | 1 β’ ((π β Top β§ π β Top) β π½ β (TopOnβ(π Cn π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βͺ cuni 4909 βcfv 6544 (class class class)co 7409 Topctop 22395 TopOnctopon 22412 Cn ccn 22728 βko cxko 23065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-1o 8466 df-er 8703 df-en 8940 df-fin 8943 df-fi 9406 df-rest 17368 df-topgen 17389 df-top 22396 df-topon 22413 df-bases 22449 df-cmp 22891 df-xko 23067 |
This theorem is referenced by: xkoccn 23123 xkopjcn 23160 xkoco1cn 23161 xkoco2cn 23162 xkococn 23164 cnmptkp 23184 cnmptk1 23185 cnmpt1k 23186 cnmptkk 23187 xkofvcn 23188 cnmptk1p 23189 cnmptk2 23190 xkoinjcn 23191 xkocnv 23318 xkohmeo 23319 efmndtmd 23605 symgtgp 23610 |
Copyright terms: Public domain | W3C validator |