| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotopon | Structured version Visualization version GIF version | ||
| Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| xkouni.1 | ⊢ 𝐽 = (𝑆 ↑ko 𝑅) |
| Ref | Expression |
|---|---|
| xkotopon | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkouni.1 | . . 3 ⊢ 𝐽 = (𝑆 ↑ko 𝑅) | |
| 2 | xkotop 23451 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top) |
| 4 | 1 | xkouni 23462 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) |
| 5 | istopon 22775 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = ∪ 𝐽)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 (class class class)co 7369 Topctop 22756 TopOnctopon 22773 Cn ccn 23087 ↑ko cxko 23424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-en 8896 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22757 df-topon 22774 df-bases 22809 df-cmp 23250 df-xko 23426 |
| This theorem is referenced by: xkoccn 23482 xkopjcn 23519 xkoco1cn 23520 xkoco2cn 23521 xkococn 23523 cnmptkp 23543 cnmptk1 23544 cnmpt1k 23545 cnmptkk 23546 xkofvcn 23547 cnmptk1p 23548 cnmptk2 23549 xkoinjcn 23550 xkocnv 23677 xkohmeo 23678 efmndtmd 23964 symgtgp 23969 |
| Copyright terms: Public domain | W3C validator |