| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotopon | Structured version Visualization version GIF version | ||
| Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| xkouni.1 | ⊢ 𝐽 = (𝑆 ↑ko 𝑅) |
| Ref | Expression |
|---|---|
| xkotopon | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkouni.1 | . . 3 ⊢ 𝐽 = (𝑆 ↑ko 𝑅) | |
| 2 | xkotop 23523 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | |
| 3 | 1, 2 | eqeltrid 2837 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top) |
| 4 | 1 | xkouni 23534 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) |
| 5 | istopon 22847 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = ∪ 𝐽)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 Topctop 22828 TopOnctopon 22845 Cn ccn 23159 ↑ko cxko 23496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-1o 8394 df-2o 8395 df-en 8880 df-fin 8883 df-fi 9306 df-rest 17333 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cmp 23322 df-xko 23498 |
| This theorem is referenced by: xkoccn 23554 xkopjcn 23591 xkoco1cn 23592 xkoco2cn 23593 xkococn 23595 cnmptkp 23615 cnmptk1 23616 cnmpt1k 23617 cnmptkk 23618 xkofvcn 23619 cnmptk1p 23620 cnmptk2 23621 xkoinjcn 23622 xkocnv 23749 xkohmeo 23750 efmndtmd 24036 symgtgp 24041 |
| Copyright terms: Public domain | W3C validator |