MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkotopon Structured version   Visualization version   GIF version

Theorem xkotopon 23463
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆ko 𝑅)
Assertion
Ref Expression
xkotopon ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)))

Proof of Theorem xkotopon
StepHypRef Expression
1 xkouni.1 . . 3 𝐽 = (𝑆ko 𝑅)
2 xkotop 23451 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
31, 2eqeltrid 2832 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top)
41xkouni 23462 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
5 istopon 22775 . 2 (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = 𝐽))
63, 4, 5sylanbrc 583 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4867  cfv 6499  (class class class)co 7369  Topctop 22756  TopOnctopon 22773   Cn ccn 23087  ko cxko 23424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-xko 23426
This theorem is referenced by:  xkoccn  23482  xkopjcn  23519  xkoco1cn  23520  xkoco2cn  23521  xkococn  23523  cnmptkp  23543  cnmptk1  23544  cnmpt1k  23545  cnmptkk  23546  xkofvcn  23547  cnmptk1p  23548  cnmptk2  23549  xkoinjcn  23550  xkocnv  23677  xkohmeo  23678  efmndtmd  23964  symgtgp  23969
  Copyright terms: Public domain W3C validator