MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkotopon Structured version   Visualization version   GIF version

Theorem xkotopon 23535
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆ko 𝑅)
Assertion
Ref Expression
xkotopon ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)))

Proof of Theorem xkotopon
StepHypRef Expression
1 xkouni.1 . . 3 𝐽 = (𝑆ko 𝑅)
2 xkotop 23523 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
31, 2eqeltrid 2837 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top)
41xkouni 23534 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
5 istopon 22847 . 2 (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = 𝐽))
63, 4, 5sylanbrc 583 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   cuni 4860  cfv 6489  (class class class)co 7355  Topctop 22828  TopOnctopon 22845   Cn ccn 23159  ko cxko 23496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-1o 8394  df-2o 8395  df-en 8880  df-fin 8883  df-fi 9306  df-rest 17333  df-topgen 17354  df-top 22829  df-topon 22846  df-bases 22881  df-cmp 23322  df-xko 23498
This theorem is referenced by:  xkoccn  23554  xkopjcn  23591  xkoco1cn  23592  xkoco2cn  23593  xkococn  23595  cnmptkp  23615  cnmptk1  23616  cnmpt1k  23617  cnmptkk  23618  xkofvcn  23619  cnmptk1p  23620  cnmptk2  23621  xkoinjcn  23622  xkocnv  23749  xkohmeo  23750  efmndtmd  24036  symgtgp  24041
  Copyright terms: Public domain W3C validator