| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotopon | Structured version Visualization version GIF version | ||
| Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| xkouni.1 | ⊢ 𝐽 = (𝑆 ↑ko 𝑅) |
| Ref | Expression |
|---|---|
| xkotopon | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkouni.1 | . . 3 ⊢ 𝐽 = (𝑆 ↑ko 𝑅) | |
| 2 | xkotop 23498 | . . 3 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | |
| 3 | 1, 2 | eqeltrid 2835 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ Top) |
| 4 | 1 | xkouni 23509 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) |
| 5 | istopon 22822 | . 2 ⊢ (𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆)) ↔ (𝐽 ∈ Top ∧ (𝑅 Cn 𝑆) = ∪ 𝐽)) | |
| 6 | 3, 4, 5 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cuni 4854 ‘cfv 6476 (class class class)co 7341 Topctop 22803 TopOnctopon 22820 Cn ccn 23134 ↑ko cxko 23471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-1o 8380 df-2o 8381 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17321 df-topgen 17342 df-top 22804 df-topon 22821 df-bases 22856 df-cmp 23297 df-xko 23473 |
| This theorem is referenced by: xkoccn 23529 xkopjcn 23566 xkoco1cn 23567 xkoco2cn 23568 xkococn 23570 cnmptkp 23590 cnmptk1 23591 cnmpt1k 23592 cnmptkk 23593 xkofvcn 23594 cnmptk1p 23595 cnmptk2 23596 xkoinjcn 23597 xkocnv 23724 xkohmeo 23725 efmndtmd 24011 symgtgp 24016 |
| Copyright terms: Public domain | W3C validator |