Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addcld Structured version   Visualization version   GIF version

Theorem xrge0addcld 32575
Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.)
Hypotheses
Ref Expression
xrge0addcld.a (𝜑𝐴 ∈ (0[,]+∞))
xrge0addcld.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xrge0addcld (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))

Proof of Theorem xrge0addcld
StepHypRef Expression
1 xrge0addcld.a . . . . 5 (𝜑𝐴 ∈ (0[,]+∞))
2 elxrge0 13464 . . . . 5 (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
31, 2sylib 217 . . . 4 (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
43simpld 493 . . 3 (𝜑𝐴 ∈ ℝ*)
5 xrge0addcld.b . . . . 5 (𝜑𝐵 ∈ (0[,]+∞))
6 elxrge0 13464 . . . . 5 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
75, 6sylib 217 . . . 4 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
87simpld 493 . . 3 (𝜑𝐵 ∈ ℝ*)
94, 8xaddcld 13310 . 2 (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
103simprd 494 . . 3 (𝜑 → 0 ≤ 𝐴)
117simprd 494 . . 3 (𝜑 → 0 ≤ 𝐵)
12 xaddge0 13267 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵))
134, 8, 10, 11, 12syl22anc 837 . 2 (𝜑 → 0 ≤ (𝐴 +𝑒 𝐵))
14 elxrge0 13464 . 2 ((𝐴 +𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 𝐵)))
159, 13, 14sylanbrc 581 1 (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098   class class class wbr 5143  (class class class)co 7415  0cc0 11136  +∞cpnf 11273  *cxr 11275  cle 11277   +𝑒 cxad 13120  [,]cicc 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-xadd 13123  df-icc 13361
This theorem is referenced by:  omssubadd  33976
  Copyright terms: Public domain W3C validator