Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addcld Structured version   Visualization version   GIF version

Theorem xrge0addcld 31130
Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.)
Hypotheses
Ref Expression
xrge0addcld.a (𝜑𝐴 ∈ (0[,]+∞))
xrge0addcld.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xrge0addcld (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))

Proof of Theorem xrge0addcld
StepHypRef Expression
1 xrge0addcld.a . . . . 5 (𝜑𝐴 ∈ (0[,]+∞))
2 elxrge0 13235 . . . . 5 (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
31, 2sylib 217 . . . 4 (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
43simpld 496 . . 3 (𝜑𝐴 ∈ ℝ*)
5 xrge0addcld.b . . . . 5 (𝜑𝐵 ∈ (0[,]+∞))
6 elxrge0 13235 . . . . 5 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
75, 6sylib 217 . . . 4 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
87simpld 496 . . 3 (𝜑𝐵 ∈ ℝ*)
94, 8xaddcld 13081 . 2 (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
103simprd 497 . . 3 (𝜑 → 0 ≤ 𝐴)
117simprd 497 . . 3 (𝜑 → 0 ≤ 𝐵)
12 xaddge0 13038 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵))
134, 8, 10, 11, 12syl22anc 837 . 2 (𝜑 → 0 ≤ (𝐴 +𝑒 𝐵))
14 elxrge0 13235 . 2 ((𝐴 +𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 𝐵)))
159, 13, 14sylanbrc 584 1 (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104   class class class wbr 5081  (class class class)co 7307  0cc0 10917  +∞cpnf 11052  *cxr 11054  cle 11056   +𝑒 cxad 12892  [,]cicc 13128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-xadd 12895  df-icc 13132
This theorem is referenced by:  omssubadd  32312
  Copyright terms: Public domain W3C validator