![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0addcld | Structured version Visualization version GIF version |
Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
Ref | Expression |
---|---|
xrge0addcld.a | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
xrge0addcld.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0addcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0addcld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
2 | elxrge0 13434 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
4 | 3 | simpld 496 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
5 | xrge0addcld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
6 | elxrge0 13434 | . . . . 5 ⊢ (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) |
8 | 7 | simpld 496 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
9 | 4, 8 | xaddcld 13280 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
10 | 3 | simprd 497 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) |
11 | 7 | simprd 497 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐵) |
12 | xaddge0 13237 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) | |
13 | 4, 8, 10, 11, 12 | syl22anc 838 | . 2 ⊢ (𝜑 → 0 ≤ (𝐴 +𝑒 𝐵)) |
14 | elxrge0 13434 | . 2 ⊢ ((𝐴 +𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 𝐵))) | |
15 | 9, 13, 14 | sylanbrc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 ℝ*cxr 11247 ≤ cle 11249 +𝑒 cxad 13090 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-xadd 13093 df-icc 13331 |
This theorem is referenced by: omssubadd 33299 |
Copyright terms: Public domain | W3C validator |