Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0addcld | Structured version Visualization version GIF version |
Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
Ref | Expression |
---|---|
xrge0addcld.a | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
xrge0addcld.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0addcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0addcld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
2 | elxrge0 13235 | . . . . 5 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
4 | 3 | simpld 496 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
5 | xrge0addcld.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
6 | elxrge0 13235 | . . . . 5 ⊢ (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) | |
7 | 5, 6 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) |
8 | 7 | simpld 496 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
9 | 4, 8 | xaddcld 13081 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
10 | 3 | simprd 497 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) |
11 | 7 | simprd 497 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐵) |
12 | xaddge0 13038 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) | |
13 | 4, 8, 10, 11, 12 | syl22anc 837 | . 2 ⊢ (𝜑 → 0 ≤ (𝐴 +𝑒 𝐵)) |
14 | elxrge0 13235 | . 2 ⊢ ((𝐴 +𝑒 𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 𝐵))) | |
15 | 9, 13, 14 | sylanbrc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 0cc0 10917 +∞cpnf 11052 ℝ*cxr 11054 ≤ cle 11056 +𝑒 cxad 12892 [,]cicc 13128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-xadd 12895 df-icc 13132 |
This theorem is referenced by: omssubadd 32312 |
Copyright terms: Public domain | W3C validator |