Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0subcld Structured version   Visualization version   GIF version

Theorem xrge0subcld 31095
Description: Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
xrge0subcld.a (𝜑𝐴 ∈ (0[,]+∞))
xrge0subcld.b (𝜑𝐵 ∈ (0[,]+∞))
xrge0subcld.c (𝜑𝐵𝐴)
Assertion
Ref Expression
xrge0subcld (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))

Proof of Theorem xrge0subcld
StepHypRef Expression
1 iccssxr 13171 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 xrge0subcld.a . . . . 5 (𝜑𝐴 ∈ (0[,]+∞))
31, 2sselid 3920 . . . 4 (𝜑𝐴 ∈ ℝ*)
4 xrge0subcld.b . . . . . 6 (𝜑𝐵 ∈ (0[,]+∞))
51, 4sselid 3920 . . . . 5 (𝜑𝐵 ∈ ℝ*)
65xnegcld 13043 . . . 4 (𝜑 → -𝑒𝐵 ∈ ℝ*)
73, 6xaddcld 13044 . . 3 (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 xrge0subcld.c . . . 4 (𝜑𝐵𝐴)
9 xsubge0 13004 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
103, 5, 9syl2anc 584 . . . 4 (𝜑 → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
118, 10mpbird 256 . . 3 (𝜑 → 0 ≤ (𝐴 +𝑒 -𝑒𝐵))
127, 11jca 512 . 2 (𝜑 → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
13 elxrge0 13198 . 2 ((𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
1412, 13sylibr 233 1 (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2107   class class class wbr 5075  (class class class)co 7284  0cc0 10880  +∞cpnf 11015  *cxr 11017  cle 11019  -𝑒cxne 12854   +𝑒 cxad 12855  [,]cicc 13091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-1st 7840  df-2nd 7841  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-xneg 12857  df-xadd 12858  df-icc 13095
This theorem is referenced by:  carsgclctunlem2  32295
  Copyright terms: Public domain W3C validator