![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0subcld | Structured version Visualization version GIF version |
Description: Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
xrge0subcld.a | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
xrge0subcld.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
xrge0subcld.c | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
xrge0subcld | ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13412 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrge0subcld.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
3 | 1, 2 | sselid 3981 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
4 | xrge0subcld.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
5 | 1, 4 | sselid 3981 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
6 | 5 | xnegcld 13284 | . . . 4 ⊢ (𝜑 → -𝑒𝐵 ∈ ℝ*) |
7 | 3, 6 | xaddcld 13285 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*) |
8 | xrge0subcld.c | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
9 | xsubge0 13245 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | |
10 | 3, 5, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
11 | 8, 10 | mpbird 256 | . . 3 ⊢ (𝜑 → 0 ≤ (𝐴 +𝑒 -𝑒𝐵)) |
12 | 7, 11 | jca 511 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) |
13 | elxrge0 13439 | . 2 ⊢ ((𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐴 +𝑒 -𝑒𝐵))) | |
14 | 12, 13 | sylibr 233 | 1 ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 class class class wbr 5149 (class class class)co 7412 0cc0 11113 +∞cpnf 11250 ℝ*cxr 11252 ≤ cle 11254 -𝑒cxne 13094 +𝑒 cxad 13095 [,]cicc 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-xneg 13097 df-xadd 13098 df-icc 13336 |
This theorem is referenced by: carsgclctunlem2 33613 |
Copyright terms: Public domain | W3C validator |