ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem15 GIF version

Theorem 4sqlem15 12440
Description: Lemma for 4sq 12445. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
2 eluz2nn 9598 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
31, 2syl 14 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
43nnred 8963 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
54resqcld 10714 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℝ)
65rehalfcld 9196 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
76rehalfcld 9196 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
87recnd 8017 . . . . . . 7 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
9 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
10 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 3, 104sqlem5 12417 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
1211simpld 112 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
13 zsqcl 10625 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
1412, 13syl 14 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1514zred 9406 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
1615recnd 8017 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
17 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 3, 184sqlem5 12417 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
2019simpld 112 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
21 zsqcl 10625 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
2220, 21syl 14 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
2322zred 9406 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
2423recnd 8017 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℂ)
258, 8, 16, 24addsub4d 8346 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))))
266recnd 8017 . . . . . . . 8 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
27262halvesd 9195 . . . . . . 7 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
2827oveq1d 5912 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
2925, 28eqtr3d 2224 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
3029adantr 276 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
315recnd 8017 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℂ)
32312halvesd 9195 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
3332adantr 276 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
344recnd 8017 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
3534sqvald 10685 . . . . . . . . . 10 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
3635adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) = (𝑀 · 𝑀))
37 4sq.r . . . . . . . . . . 11 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
38 simpr 110 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → 𝑅 = 𝑀)
3937, 38eqtr3id 2236 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 𝑀)
4039oveq1d 5912 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (𝑀 · 𝑀))
4115, 23readdcld 8018 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
42 4sq.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℤ)
43 4sq.g . . . . . . . . . . . . . . . . . 18 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 3, 434sqlem5 12417 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
4544simpld 112 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ ℤ)
46 zsqcl 10625 . . . . . . . . . . . . . . . 16 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
4745, 46syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) ∈ ℤ)
4847zred 9406 . . . . . . . . . . . . . 14 (𝜑 → (𝐺↑2) ∈ ℝ)
49 4sq.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℤ)
50 4sq.h . . . . . . . . . . . . . . . . . 18 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5149, 3, 504sqlem5 12417 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5251simpld 112 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ∈ ℤ)
53 zsqcl 10625 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
5452, 53syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻↑2) ∈ ℤ)
5554zred 9406 . . . . . . . . . . . . . 14 (𝜑 → (𝐻↑2) ∈ ℝ)
5648, 55readdcld 8018 . . . . . . . . . . . . 13 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
5741, 56readdcld 8018 . . . . . . . . . . . 12 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
5857recnd 8017 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
593nnap0d 8996 . . . . . . . . . . 11 (𝜑𝑀 # 0)
6058, 34, 59divcanap1d 8779 . . . . . . . . . 10 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6160adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6236, 40, 613eqtr2rd 2229 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = (𝑀↑2))
6333, 62oveq12d 5915 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((𝑀↑2) − (𝑀↑2)))
6441recnd 8017 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
6556recnd 8017 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
6626, 26, 64, 65addsub4d 8346 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6766adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6831subidd 8287 . . . . . . . 8 (𝜑 → ((𝑀↑2) − (𝑀↑2)) = 0)
6968adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) − (𝑀↑2)) = 0)
7063, 67, 693eqtr3d 2230 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0)
716, 41resubcld 8369 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ)
729, 3, 104sqlem7 12419 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
7317, 3, 184sqlem7 12419 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
7415, 23, 7, 7, 72, 73le2addd 8551 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
7574, 27breqtrd 4044 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
766, 41subge0d 8523 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ↔ ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)))
7775, 76mpbird 167 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
786, 56resubcld 8369 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
7942, 3, 434sqlem7 12419 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
8049, 3, 504sqlem7 12419 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
8148, 55, 7, 7, 79, 80le2addd 8551 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
8281, 27breqtrd 4044 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
836, 56subge0d 8523 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ↔ ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2)))
8482, 83mpbird 167 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
85 add20 8462 . . . . . . . 8 ((((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2)))) ∧ ((((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))) → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8671, 77, 78, 84, 85syl22anc 1250 . . . . . . 7 (𝜑 → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8786biimpa 296 . . . . . 6 ((𝜑 ∧ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8870, 87syldan 282 . . . . 5 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8988simpld 112 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0)
9030, 89eqtrd 2222 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0)
917, 15resubcld 8369 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ)
927, 15subge0d 8523 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ↔ (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2)))
9372, 92mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)))
947, 23resubcld 8369 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ)
957, 23subge0d 8523 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ↔ (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2)))
9673, 95mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))
97 add20 8462 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9891, 93, 94, 96, 97syl22anc 1250 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9998biimpa 296 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10090, 99syldan 282 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10148recnd 8017 . . . . . . 7 (𝜑 → (𝐺↑2) ∈ ℂ)
10255recnd 8017 . . . . . . 7 (𝜑 → (𝐻↑2) ∈ ℂ)
1038, 8, 101, 102addsub4d 8346 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))))
10427oveq1d 5912 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
105103, 104eqtr3d 2224 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
106105adantr 276 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
10788simprd 114 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)
108106, 107eqtrd 2222 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0)
1097, 48resubcld 8369 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ)
1107, 48subge0d 8523 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ↔ (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2)))
11179, 110mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)))
1127, 55resubcld 8369 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ)
1137, 55subge0d 8523 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ↔ (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2)))
11480, 113mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))
115 add20 8462 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
116109, 111, 112, 114, 115syl22anc 1250 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
117116biimpa 296 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
118108, 117syldan 282 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
119100, 118jca 306 1 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  {cab 2175  wrex 2469  {crab 2472  wss 3144   class class class wbr 4018  cfv 5235  (class class class)co 5897  infcinf 7013  cr 7841  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847   < clt 8023  cle 8024  cmin 8159   / cdiv 8660  cn 8950  2c2 9001  cz 9284  cuz 9559  ...cfz 10040   mod cmo 10355  cexp 10553  cprime 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043
This theorem is referenced by:  4sqlem16  12441
  Copyright terms: Public domain W3C validator