ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem15 GIF version

Theorem 4sqlem15 12728
Description: Lemma for 4sq 12733. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
2 eluz2nn 9687 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
31, 2syl 14 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
43nnred 9049 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
54resqcld 10844 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℝ)
65rehalfcld 9284 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
76rehalfcld 9284 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
87recnd 8101 . . . . . . 7 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
9 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
10 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 3, 104sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
1211simpld 112 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
13 zsqcl 10755 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
1412, 13syl 14 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1514zred 9495 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
1615recnd 8101 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
17 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 3, 184sqlem5 12705 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
2019simpld 112 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
21 zsqcl 10755 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
2220, 21syl 14 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
2322zred 9495 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
2423recnd 8101 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℂ)
258, 8, 16, 24addsub4d 8430 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))))
266recnd 8101 . . . . . . . 8 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
27262halvesd 9283 . . . . . . 7 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
2827oveq1d 5959 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
2925, 28eqtr3d 2240 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
3029adantr 276 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
315recnd 8101 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℂ)
32312halvesd 9283 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
3332adantr 276 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
344recnd 8101 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
3534sqvald 10815 . . . . . . . . . 10 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
3635adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) = (𝑀 · 𝑀))
37 4sq.r . . . . . . . . . . 11 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
38 simpr 110 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → 𝑅 = 𝑀)
3937, 38eqtr3id 2252 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 𝑀)
4039oveq1d 5959 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (𝑀 · 𝑀))
4115, 23readdcld 8102 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
42 4sq.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℤ)
43 4sq.g . . . . . . . . . . . . . . . . . 18 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 3, 434sqlem5 12705 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
4544simpld 112 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ ℤ)
46 zsqcl 10755 . . . . . . . . . . . . . . . 16 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
4745, 46syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) ∈ ℤ)
4847zred 9495 . . . . . . . . . . . . . 14 (𝜑 → (𝐺↑2) ∈ ℝ)
49 4sq.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℤ)
50 4sq.h . . . . . . . . . . . . . . . . . 18 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5149, 3, 504sqlem5 12705 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5251simpld 112 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ∈ ℤ)
53 zsqcl 10755 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
5452, 53syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻↑2) ∈ ℤ)
5554zred 9495 . . . . . . . . . . . . . 14 (𝜑 → (𝐻↑2) ∈ ℝ)
5648, 55readdcld 8102 . . . . . . . . . . . . 13 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
5741, 56readdcld 8102 . . . . . . . . . . . 12 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
5857recnd 8101 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
593nnap0d 9082 . . . . . . . . . . 11 (𝜑𝑀 # 0)
6058, 34, 59divcanap1d 8864 . . . . . . . . . 10 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6160adantr 276 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6236, 40, 613eqtr2rd 2245 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = (𝑀↑2))
6333, 62oveq12d 5962 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((𝑀↑2) − (𝑀↑2)))
6441recnd 8101 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
6556recnd 8101 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
6626, 26, 64, 65addsub4d 8430 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6766adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6831subidd 8371 . . . . . . . 8 (𝜑 → ((𝑀↑2) − (𝑀↑2)) = 0)
6968adantr 276 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) − (𝑀↑2)) = 0)
7063, 67, 693eqtr3d 2246 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0)
716, 41resubcld 8453 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ)
729, 3, 104sqlem7 12707 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
7317, 3, 184sqlem7 12707 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
7415, 23, 7, 7, 72, 73le2addd 8636 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
7574, 27breqtrd 4070 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
766, 41subge0d 8608 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ↔ ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)))
7775, 76mpbird 167 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
786, 56resubcld 8453 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
7942, 3, 434sqlem7 12707 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
8049, 3, 504sqlem7 12707 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
8148, 55, 7, 7, 79, 80le2addd 8636 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
8281, 27breqtrd 4070 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
836, 56subge0d 8608 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ↔ ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2)))
8482, 83mpbird 167 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
85 add20 8547 . . . . . . . 8 ((((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2)))) ∧ ((((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))) → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8671, 77, 78, 84, 85syl22anc 1251 . . . . . . 7 (𝜑 → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8786biimpa 296 . . . . . 6 ((𝜑 ∧ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8870, 87syldan 282 . . . . 5 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8988simpld 112 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0)
9030, 89eqtrd 2238 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0)
917, 15resubcld 8453 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ)
927, 15subge0d 8608 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ↔ (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2)))
9372, 92mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)))
947, 23resubcld 8453 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ)
957, 23subge0d 8608 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ↔ (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2)))
9673, 95mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))
97 add20 8547 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9891, 93, 94, 96, 97syl22anc 1251 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9998biimpa 296 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10090, 99syldan 282 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10148recnd 8101 . . . . . . 7 (𝜑 → (𝐺↑2) ∈ ℂ)
10255recnd 8101 . . . . . . 7 (𝜑 → (𝐻↑2) ∈ ℂ)
1038, 8, 101, 102addsub4d 8430 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))))
10427oveq1d 5959 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
105103, 104eqtr3d 2240 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
106105adantr 276 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
10788simprd 114 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)
108106, 107eqtrd 2238 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0)
1097, 48resubcld 8453 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ)
1107, 48subge0d 8608 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ↔ (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2)))
11179, 110mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)))
1127, 55resubcld 8453 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ)
1137, 55subge0d 8608 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ↔ (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2)))
11480, 113mpbird 167 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))
115 add20 8547 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
116109, 111, 112, 114, 115syl22anc 1251 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
117116biimpa 296 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
118108, 117syldan 282 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
119100, 118jca 306 1 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  {cab 2191  wrex 2485  {crab 2488  wss 3166   class class class wbr 4044  cfv 5271  (class class class)co 5944  infcinf 7085  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930   < clt 8107  cle 8108  cmin 8243   / cdiv 8745  cn 9036  2c2 9087  cz 9372  cuz 9648  ...cfz 10130   mod cmo 10467  cexp 10683  cprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  4sqlem16  12729
  Copyright terms: Public domain W3C validator