| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem5 | GIF version | ||
| Description: Lemma for 4sq 12928. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 9566 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | zq 9817 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 5 | 1, 4 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 6 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 7 | 6 | nnzd 9564 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | 2nn 9268 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | znq 9815 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
| 10 | 7, 8, 9 | sylancl 413 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
| 11 | qaddcl 9826 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
| 12 | 5, 10, 11 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
| 13 | nnq 9824 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
| 14 | 6, 13 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 15 | 6 | nngt0d 9150 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑀) |
| 16 | 12, 14, 15 | modqcld 10545 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
| 17 | qcn 9825 | . . . . . . 7 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
| 19 | 6 | nnred 9119 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 20 | 19 | rehalfcld 9354 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 21 | 20 | recnd 8171 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
| 22 | 18, 21 | subcld 8453 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
| 23 | 3, 22 | eqeltrid 2316 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 24 | 2, 23 | nncand 8458 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| 25 | 2, 23 | subcld 8453 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 26 | 19 | recnd 8171 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 27 | 6 | nnap0d 9152 | . . . . . 6 ⊢ (𝜑 → 𝑀 # 0) |
| 28 | 25, 26, 27 | divcanap1d 8934 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
| 29 | 3 | oveq2i 6011 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
| 30 | 2, 18, 21 | subsub3d 8483 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 31 | 29, 30 | eqtrid 2274 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 32 | 31 | oveq1d 6015 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
| 33 | modqdifz 10553 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
| 34 | 12, 14, 15, 33 | syl3anc 1271 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
| 35 | 32, 34 | eqeltrd 2306 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
| 36 | 35, 7 | zmulcld 9571 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
| 37 | 28, 36 | eqeltrrd 2307 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
| 38 | 1, 37 | zsubcld 9570 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
| 39 | 24, 38 | eqeltrrd 2307 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 40 | 39, 35 | jca 306 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 0cc0 7995 + caddc 7998 · cmul 8000 < clt 8177 − cmin 8313 / cdiv 8815 ℕcn 9106 2c2 9157 ℤcz 9442 ℚcq 9810 mod cmo 10539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 df-mod 10540 |
| This theorem is referenced by: 4sqlem7 12902 4sqlem8 12903 4sqlem9 12904 4sqlem10 12905 4sqlem14 12922 4sqlem15 12923 4sqlem16 12924 4sqlem17 12925 2sqlem8a 15795 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |