Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem5 | GIF version |
Description: Lemma for 4sq (not yet proved here). (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9310 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | zq 9560 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
5 | 1, 4 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
6 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
7 | 6 | nnzd 9308 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
8 | 2nn 9014 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | znq 9558 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
10 | 7, 8, 9 | sylancl 410 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
11 | qaddcl 9569 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
12 | 5, 10, 11 | syl2anc 409 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
13 | nnq 9567 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
14 | 6, 13 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
15 | 6 | nngt0d 8897 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑀) |
16 | 12, 14, 15 | modqcld 10259 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
17 | qcn 9568 | . . . . . . 7 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
19 | 6 | nnred 8866 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
20 | 19 | rehalfcld 9099 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
21 | 20 | recnd 7923 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
22 | 18, 21 | subcld 8205 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
23 | 3, 22 | eqeltrid 2252 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
24 | 2, 23 | nncand 8210 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
25 | 2, 23 | subcld 8205 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
26 | 19 | recnd 7923 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
27 | 6 | nnap0d 8899 | . . . . . 6 ⊢ (𝜑 → 𝑀 # 0) |
28 | 25, 26, 27 | divcanap1d 8683 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
29 | 3 | oveq2i 5852 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
30 | 2, 18, 21 | subsub3d 8235 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
31 | 29, 30 | syl5eq 2210 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
32 | 31 | oveq1d 5856 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
33 | modqdifz 10267 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
34 | 12, 14, 15, 33 | syl3anc 1228 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
35 | 32, 34 | eqeltrd 2242 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
36 | 35, 7 | zmulcld 9315 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
37 | 28, 36 | eqeltrrd 2243 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
38 | 1, 37 | zsubcld 9314 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
39 | 24, 38 | eqeltrrd 2243 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
40 | 39, 35 | jca 304 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℂcc 7747 0cc0 7749 + caddc 7752 · cmul 7754 < clt 7929 − cmin 8065 / cdiv 8564 ℕcn 8853 2c2 8904 ℤcz 9187 ℚcq 9553 mod cmo 10253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 |
This theorem is referenced by: 4sqlem7 12310 4sqlem8 12311 4sqlem9 12312 4sqlem10 12313 2sqlem8a 13558 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |