Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem5 | GIF version |
Description: Lemma for 4sq (not yet proved here). (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 1 | zcnd 9328 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | zq 9578 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
5 | 1, 4 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
6 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
7 | 6 | nnzd 9326 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
8 | 2nn 9032 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | znq 9576 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
10 | 7, 8, 9 | sylancl 411 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
11 | qaddcl 9587 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
12 | 5, 10, 11 | syl2anc 409 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
13 | nnq 9585 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
14 | 6, 13 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
15 | 6 | nngt0d 8915 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑀) |
16 | 12, 14, 15 | modqcld 10277 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
17 | qcn 9586 | . . . . . . 7 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
19 | 6 | nnred 8884 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
20 | 19 | rehalfcld 9117 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
21 | 20 | recnd 7941 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
22 | 18, 21 | subcld 8223 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
23 | 3, 22 | eqeltrid 2257 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
24 | 2, 23 | nncand 8228 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
25 | 2, 23 | subcld 8223 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
26 | 19 | recnd 7941 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
27 | 6 | nnap0d 8917 | . . . . . 6 ⊢ (𝜑 → 𝑀 # 0) |
28 | 25, 26, 27 | divcanap1d 8701 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
29 | 3 | oveq2i 5862 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
30 | 2, 18, 21 | subsub3d 8253 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
31 | 29, 30 | eqtrid 2215 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
32 | 31 | oveq1d 5866 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
33 | modqdifz 10285 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
34 | 12, 14, 15, 33 | syl3anc 1233 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
35 | 32, 34 | eqeltrd 2247 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
36 | 35, 7 | zmulcld 9333 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
37 | 28, 36 | eqeltrrd 2248 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
38 | 1, 37 | zsubcld 9332 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
39 | 24, 38 | eqeltrrd 2248 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
40 | 39, 35 | jca 304 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5851 ℂcc 7765 0cc0 7767 + caddc 7770 · cmul 7772 < clt 7947 − cmin 8083 / cdiv 8582 ℕcn 8871 2c2 8922 ℤcz 9205 ℚcq 9571 mod cmo 10271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-n0 9129 df-z 9206 df-q 9572 df-rp 9604 df-fl 10219 df-mod 10272 |
This theorem is referenced by: 4sqlem7 12329 4sqlem8 12330 4sqlem9 12331 4sqlem10 12332 2sqlem8a 13717 2sqlem8 13718 |
Copyright terms: Public domain | W3C validator |