| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem5 | GIF version | ||
| Description: Lemma for 4sq 12848. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 9531 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | zq 9782 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 5 | 1, 4 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 6 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 7 | 6 | nnzd 9529 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | 2nn 9233 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | znq 9780 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
| 10 | 7, 8, 9 | sylancl 413 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
| 11 | qaddcl 9791 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
| 12 | 5, 10, 11 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
| 13 | nnq 9789 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
| 14 | 6, 13 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 15 | 6 | nngt0d 9115 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑀) |
| 16 | 12, 14, 15 | modqcld 10510 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
| 17 | qcn 9790 | . . . . . . 7 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
| 19 | 6 | nnred 9084 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 20 | 19 | rehalfcld 9319 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 21 | 20 | recnd 8136 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
| 22 | 18, 21 | subcld 8418 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
| 23 | 3, 22 | eqeltrid 2294 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 24 | 2, 23 | nncand 8423 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| 25 | 2, 23 | subcld 8418 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 26 | 19 | recnd 8136 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 27 | 6 | nnap0d 9117 | . . . . . 6 ⊢ (𝜑 → 𝑀 # 0) |
| 28 | 25, 26, 27 | divcanap1d 8899 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
| 29 | 3 | oveq2i 5978 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
| 30 | 2, 18, 21 | subsub3d 8448 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 31 | 29, 30 | eqtrid 2252 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 32 | 31 | oveq1d 5982 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
| 33 | modqdifz 10518 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
| 34 | 12, 14, 15, 33 | syl3anc 1250 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
| 35 | 32, 34 | eqeltrd 2284 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
| 36 | 35, 7 | zmulcld 9536 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
| 37 | 28, 36 | eqeltrrd 2285 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
| 38 | 1, 37 | zsubcld 9535 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
| 39 | 24, 38 | eqeltrrd 2285 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 40 | 39, 35 | jca 306 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℂcc 7958 0cc0 7960 + caddc 7963 · cmul 7965 < clt 8142 − cmin 8278 / cdiv 8780 ℕcn 9071 2c2 9122 ℤcz 9407 ℚcq 9775 mod cmo 10504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 |
| This theorem is referenced by: 4sqlem7 12822 4sqlem8 12823 4sqlem9 12824 4sqlem10 12825 4sqlem14 12842 4sqlem15 12843 4sqlem16 12844 4sqlem17 12845 2sqlem8a 15714 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |