| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem5 | GIF version | ||
| Description: Lemma for 4sq 12704. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem5 | ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 1 | zcnd 9495 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | zq 9746 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 5 | 1, 4 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 6 | 4sqlem5.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 7 | 6 | nnzd 9493 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | 2nn 9197 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | znq 9744 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
| 10 | 7, 8, 9 | sylancl 413 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
| 11 | qaddcl 9755 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
| 12 | 5, 10, 11 | syl2anc 411 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
| 13 | nnq 9753 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
| 14 | 6, 13 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 15 | 6 | nngt0d 9079 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑀) |
| 16 | 12, 14, 15 | modqcld 10471 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
| 17 | qcn 9754 | . . . . . . 7 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ) |
| 19 | 6 | nnred 9048 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 20 | 19 | rehalfcld 9283 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 21 | 20 | recnd 8100 | . . . . . 6 ⊢ (𝜑 → (𝑀 / 2) ∈ ℂ) |
| 22 | 18, 21 | subcld 8382 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ) |
| 23 | 3, 22 | eqeltrid 2291 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 24 | 2, 23 | nncand 8387 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| 25 | 2, 23 | subcld 8382 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 26 | 19 | recnd 8100 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 27 | 6 | nnap0d 9081 | . . . . . 6 ⊢ (𝜑 → 𝑀 # 0) |
| 28 | 25, 26, 27 | divcanap1d 8863 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) = (𝐴 − 𝐵)) |
| 29 | 3 | oveq2i 5954 | . . . . . . . . 9 ⊢ (𝐴 − 𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
| 30 | 2, 18, 21 | subsub3d 8412 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 31 | 29, 30 | eqtrid 2249 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 − 𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀))) |
| 32 | 31 | oveq1d 5958 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀)) |
| 33 | modqdifz 10479 | . . . . . . . 8 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) | |
| 34 | 12, 14, 15, 33 | syl3anc 1249 | . . . . . . 7 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ) |
| 35 | 32, 34 | eqeltrd 2281 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
| 36 | 35, 7 | zmulcld 9500 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝐵) / 𝑀) · 𝑀) ∈ ℤ) |
| 37 | 28, 36 | eqeltrrd 2282 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
| 38 | 1, 37 | zsubcld 9499 | . . 3 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) ∈ ℤ) |
| 39 | 24, 38 | eqeltrrd 2282 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 40 | 39, 35 | jca 306 | 1 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 0cc0 7924 + caddc 7927 · cmul 7929 < clt 8106 − cmin 8242 / cdiv 8744 ℕcn 9035 2c2 9086 ℤcz 9371 ℚcq 9739 mod cmo 10465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-fl 10411 df-mod 10466 |
| This theorem is referenced by: 4sqlem7 12678 4sqlem8 12679 4sqlem9 12680 4sqlem10 12681 4sqlem14 12698 4sqlem15 12699 4sqlem16 12700 4sqlem17 12701 2sqlem8a 15570 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |