ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem5 GIF version

Theorem 4sqlem5 12676
Description: Lemma for 4sq 12704. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem5 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))

Proof of Theorem 4sqlem5
StepHypRef Expression
1 4sqlem5.2 . . . . 5 (𝜑𝐴 ∈ ℤ)
21zcnd 9495 . . . 4 (𝜑𝐴 ∈ ℂ)
3 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4 zq 9746 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
51, 4syl 14 . . . . . . . . 9 (𝜑𝐴 ∈ ℚ)
6 4sqlem5.3 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
76nnzd 9493 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8 2nn 9197 . . . . . . . . . 10 2 ∈ ℕ
9 znq 9744 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ)
107, 8, 9sylancl 413 . . . . . . . . 9 (𝜑 → (𝑀 / 2) ∈ ℚ)
11 qaddcl 9755 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ)
125, 10, 11syl2anc 411 . . . . . . . 8 (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ)
13 nnq 9753 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
146, 13syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℚ)
156nngt0d 9079 . . . . . . . 8 (𝜑 → 0 < 𝑀)
1612, 14, 15modqcld 10471 . . . . . . 7 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ)
17 qcn 9754 . . . . . . 7 (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
1816, 17syl 14 . . . . . 6 (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
196nnred 9048 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
2019rehalfcld 9283 . . . . . . 7 (𝜑 → (𝑀 / 2) ∈ ℝ)
2120recnd 8100 . . . . . 6 (𝜑 → (𝑀 / 2) ∈ ℂ)
2218, 21subcld 8382 . . . . 5 (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ∈ ℂ)
233, 22eqeltrid 2291 . . . 4 (𝜑𝐵 ∈ ℂ)
242, 23nncand 8387 . . 3 (𝜑 → (𝐴 − (𝐴𝐵)) = 𝐵)
252, 23subcld 8382 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℂ)
2619recnd 8100 . . . . . 6 (𝜑𝑀 ∈ ℂ)
276nnap0d 9081 . . . . . 6 (𝜑𝑀 # 0)
2825, 26, 27divcanap1d 8863 . . . . 5 (𝜑 → (((𝐴𝐵) / 𝑀) · 𝑀) = (𝐴𝐵))
293oveq2i 5954 . . . . . . . . 9 (𝐴𝐵) = (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))
302, 18, 21subsub3d 8412 . . . . . . . . 9 (𝜑 → (𝐴 − (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)))
3129, 30eqtrid 2249 . . . . . . . 8 (𝜑 → (𝐴𝐵) = ((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)))
3231oveq1d 5958 . . . . . . 7 (𝜑 → ((𝐴𝐵) / 𝑀) = (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀))
33 modqdifz 10479 . . . . . . . 8 (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ)
3412, 14, 15, 33syl3anc 1249 . . . . . . 7 (𝜑 → (((𝐴 + (𝑀 / 2)) − ((𝐴 + (𝑀 / 2)) mod 𝑀)) / 𝑀) ∈ ℤ)
3532, 34eqeltrd 2281 . . . . . 6 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
3635, 7zmulcld 9500 . . . . 5 (𝜑 → (((𝐴𝐵) / 𝑀) · 𝑀) ∈ ℤ)
3728, 36eqeltrrd 2282 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℤ)
381, 37zsubcld 9499 . . 3 (𝜑 → (𝐴 − (𝐴𝐵)) ∈ ℤ)
3924, 38eqeltrrd 2282 . 2 (𝜑𝐵 ∈ ℤ)
4039, 35jca 306 1 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5943  cc 7922  0cc0 7924   + caddc 7927   · cmul 7929   < clt 8106  cmin 8242   / cdiv 8744  cn 9035  2c2 9086  cz 9371  cq 9739   mod cmo 10465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-q 9740  df-rp 9775  df-fl 10411  df-mod 10466
This theorem is referenced by:  4sqlem7  12678  4sqlem8  12679  4sqlem9  12680  4sqlem10  12681  4sqlem14  12698  4sqlem15  12699  4sqlem16  12700  4sqlem17  12701  2sqlem8a  15570  2sqlem8  15571
  Copyright terms: Public domain W3C validator