ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemafi GIF version

Theorem 4sqlemafi 12833
Description: Lemma for 4sq 12848. 𝐴 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
Assertion
Ref Expression
4sqlemafi (𝜑𝐴 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑚)

Proof of Theorem 4sqlemafi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.a . 2 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
2 0zd 9419 . . . 4 (𝜑 → 0 ∈ ℤ)
3 4sqlemafi.p . . . . 5 (𝜑𝑃 ∈ ℕ)
43nnzd 9529 . . . 4 (𝜑𝑃 ∈ ℤ)
5 fzofig 10614 . . . 4 ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0..^𝑃) ∈ Fin)
62, 4, 5syl2anc 411 . . 3 (𝜑 → (0..^𝑃) ∈ Fin)
7 df-rex 2492 . . . . 5 (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)))
87abbii 2323 . . . 4 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))}
9 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 = ((𝑚↑2) mod 𝑃))
10 elfzelz 10182 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1110ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑚 ∈ ℤ)
12 zsqcl 10792 . . . . . . . . . 10 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ)
143adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑃 ∈ ℕ)
15 zmodfzo 10529 . . . . . . . . 9 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
1613, 14, 15syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
179, 16eqeltrd 2284 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 ∈ (0..^𝑃))
1817ex 115 . . . . . 6 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
1918exlimdv 1843 . . . . 5 (𝜑 → (∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
2019abssdv 3275 . . . 4 (𝜑 → {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))} ⊆ (0..^𝑃))
218, 20eqsstrid 3247 . . 3 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃))
22 0zd 9419 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 0 ∈ ℤ)
23 4sqlemafi.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnzd 9529 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2524adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 𝑁 ∈ ℤ)
26 elfzoelz 10304 . . . . . . . 8 (𝑥 ∈ (0..^𝑃) → 𝑥 ∈ ℤ)
2726ad2antlr 489 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑥 ∈ ℤ)
2810adantl 277 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
2928, 12syl 14 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
303ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
3129, 30zmodcld 10527 . . . . . . . 8 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
3231nn0zd 9528 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
33 zdceq 9483 . . . . . . 7 ((𝑥 ∈ ℤ ∧ ((𝑚↑2) mod 𝑃) ∈ ℤ) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3427, 32, 33syl2anc 411 . . . . . 6 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3522, 25, 34exfzdc 10406 . . . . 5 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
36 vex 2779 . . . . . . 7 𝑥 ∈ V
37 eqeq1 2214 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑥 = ((𝑚↑2) mod 𝑃)))
3837rexbidv 2509 . . . . . . 7 (𝑢 = 𝑥 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃)))
3936, 38elab 2924 . . . . . 6 (𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4039dcbii 842 . . . . 5 (DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4135, 40sylibr 134 . . . 4 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
4241ralrimiva 2581 . . 3 (𝜑 → ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
43 ssfidc 7060 . . 3 (((0..^𝑃) ∈ Fin ∧ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃) ∧ ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}) → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
446, 21, 42, 43syl3anc 1250 . 2 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
451, 44eqeltrid 2294 1 (𝜑𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wex 1516  wcel 2178  {cab 2193  wral 2486  wrex 2487  wss 3174  (class class class)co 5967  Fincfn 6850  0cc0 7960  cn 9071  2c2 9122  cz 9407  ...cfz 10165  ..^cfzo 10299   mod cmo 10504  cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  4sqlemffi  12834  4sqleminfi  12835  4sqlem11  12839
  Copyright terms: Public domain W3C validator