ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemafi GIF version

Theorem 4sqlemafi 12591
Description: Lemma for 4sq 12606. 𝐴 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
Assertion
Ref Expression
4sqlemafi (𝜑𝐴 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑚)

Proof of Theorem 4sqlemafi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.a . 2 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
2 0zd 9357 . . . 4 (𝜑 → 0 ∈ ℤ)
3 4sqlemafi.p . . . . 5 (𝜑𝑃 ∈ ℕ)
43nnzd 9466 . . . 4 (𝜑𝑃 ∈ ℤ)
5 fzofig 10543 . . . 4 ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0..^𝑃) ∈ Fin)
62, 4, 5syl2anc 411 . . 3 (𝜑 → (0..^𝑃) ∈ Fin)
7 df-rex 2481 . . . . 5 (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)))
87abbii 2312 . . . 4 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))}
9 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 = ((𝑚↑2) mod 𝑃))
10 elfzelz 10119 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1110ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑚 ∈ ℤ)
12 zsqcl 10721 . . . . . . . . . 10 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ)
143adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑃 ∈ ℕ)
15 zmodfzo 10458 . . . . . . . . 9 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
1613, 14, 15syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
179, 16eqeltrd 2273 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 ∈ (0..^𝑃))
1817ex 115 . . . . . 6 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
1918exlimdv 1833 . . . . 5 (𝜑 → (∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
2019abssdv 3258 . . . 4 (𝜑 → {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))} ⊆ (0..^𝑃))
218, 20eqsstrid 3230 . . 3 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃))
22 0zd 9357 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 0 ∈ ℤ)
23 4sqlemafi.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnzd 9466 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2524adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 𝑁 ∈ ℤ)
26 elfzoelz 10241 . . . . . . . 8 (𝑥 ∈ (0..^𝑃) → 𝑥 ∈ ℤ)
2726ad2antlr 489 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑥 ∈ ℤ)
2810adantl 277 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
2928, 12syl 14 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
303ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
3129, 30zmodcld 10456 . . . . . . . 8 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
3231nn0zd 9465 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
33 zdceq 9420 . . . . . . 7 ((𝑥 ∈ ℤ ∧ ((𝑚↑2) mod 𝑃) ∈ ℤ) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3427, 32, 33syl2anc 411 . . . . . 6 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3522, 25, 34exfzdc 10335 . . . . 5 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
36 vex 2766 . . . . . . 7 𝑥 ∈ V
37 eqeq1 2203 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑥 = ((𝑚↑2) mod 𝑃)))
3837rexbidv 2498 . . . . . . 7 (𝑢 = 𝑥 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃)))
3936, 38elab 2908 . . . . . 6 (𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4039dcbii 841 . . . . 5 (DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4135, 40sylibr 134 . . . 4 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
4241ralrimiva 2570 . . 3 (𝜑 → ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
43 ssfidc 7007 . . 3 (((0..^𝑃) ∈ Fin ∧ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃) ∧ ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}) → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
446, 21, 42, 43syl3anc 1249 . 2 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
451, 44eqeltrid 2283 1 (𝜑𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  wss 3157  (class class class)co 5925  Fincfn 6808  0cc0 7898  cn 9009  2c2 9060  cz 9345  ...cfz 10102  ..^cfzo 10236   mod cmo 10433  cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650
This theorem is referenced by:  4sqlemffi  12592  4sqleminfi  12593  4sqlem11  12597
  Copyright terms: Public domain W3C validator