ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemafi GIF version

Theorem 4sqlemafi 12564
Description: Lemma for 4sq 12579. 𝐴 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
Assertion
Ref Expression
4sqlemafi (𝜑𝐴 ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑚)

Proof of Theorem 4sqlemafi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.a . 2 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
2 0zd 9338 . . . 4 (𝜑 → 0 ∈ ℤ)
3 4sqlemafi.p . . . . 5 (𝜑𝑃 ∈ ℕ)
43nnzd 9447 . . . 4 (𝜑𝑃 ∈ ℤ)
5 fzofig 10524 . . . 4 ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0..^𝑃) ∈ Fin)
62, 4, 5syl2anc 411 . . 3 (𝜑 → (0..^𝑃) ∈ Fin)
7 df-rex 2481 . . . . 5 (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)))
87abbii 2312 . . . 4 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))}
9 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 = ((𝑚↑2) mod 𝑃))
10 elfzelz 10100 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
1110ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑚 ∈ ℤ)
12 zsqcl 10702 . . . . . . . . . 10 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
1311, 12syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → (𝑚↑2) ∈ ℤ)
143adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑃 ∈ ℕ)
15 zmodfzo 10439 . . . . . . . . 9 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
1613, 14, 15syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → ((𝑚↑2) mod 𝑃) ∈ (0..^𝑃))
179, 16eqeltrd 2273 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))) → 𝑢 ∈ (0..^𝑃))
1817ex 115 . . . . . 6 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
1918exlimdv 1833 . . . . 5 (𝜑 → (∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ (0..^𝑃)))
2019abssdv 3257 . . . 4 (𝜑 → {𝑢 ∣ ∃𝑚(𝑚 ∈ (0...𝑁) ∧ 𝑢 = ((𝑚↑2) mod 𝑃))} ⊆ (0..^𝑃))
218, 20eqsstrid 3229 . . 3 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃))
22 0zd 9338 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 0 ∈ ℤ)
23 4sqlemafi.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
2423nnzd 9447 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2524adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (0..^𝑃)) → 𝑁 ∈ ℤ)
26 elfzoelz 10222 . . . . . . . 8 (𝑥 ∈ (0..^𝑃) → 𝑥 ∈ ℤ)
2726ad2antlr 489 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑥 ∈ ℤ)
2810adantl 277 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
2928, 12syl 14 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑚↑2) ∈ ℤ)
303ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
3129, 30zmodcld 10437 . . . . . . . 8 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
3231nn0zd 9446 . . . . . . 7 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
33 zdceq 9401 . . . . . . 7 ((𝑥 ∈ ℤ ∧ ((𝑚↑2) mod 𝑃) ∈ ℤ) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3427, 32, 33syl2anc 411 . . . . . 6 (((𝜑𝑥 ∈ (0..^𝑃)) ∧ 𝑚 ∈ (0...𝑁)) → DECID 𝑥 = ((𝑚↑2) mod 𝑃))
3522, 25, 34exfzdc 10316 . . . . 5 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
36 vex 2766 . . . . . . 7 𝑥 ∈ V
37 eqeq1 2203 . . . . . . . 8 (𝑢 = 𝑥 → (𝑢 = ((𝑚↑2) mod 𝑃) ↔ 𝑥 = ((𝑚↑2) mod 𝑃)))
3837rexbidv 2498 . . . . . . 7 (𝑢 = 𝑥 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃)))
3936, 38elab 2908 . . . . . 6 (𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4039dcbii 841 . . . . 5 (DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↔ DECID𝑚 ∈ (0...𝑁)𝑥 = ((𝑚↑2) mod 𝑃))
4135, 40sylibr 134 . . . 4 ((𝜑𝑥 ∈ (0..^𝑃)) → DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
4241ralrimiva 2570 . . 3 (𝜑 → ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)})
43 ssfidc 6998 . . 3 (((0..^𝑃) ∈ Fin ∧ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0..^𝑃) ∧ ∀𝑥 ∈ (0..^𝑃)DECID 𝑥 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}) → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
446, 21, 42, 43syl3anc 1249 . 2 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ∈ Fin)
451, 44eqeltrid 2283 1 (𝜑𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  wss 3157  (class class class)co 5922  Fincfn 6799  0cc0 7879  cn 8990  2c2 9041  cz 9326  ...cfz 10083  ..^cfzo 10217   mod cmo 10414  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  4sqlemffi  12565  4sqleminfi  12566  4sqlem11  12570
  Copyright terms: Public domain W3C validator