Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zaddcld | GIF version |
Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
zaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
Ref | Expression |
---|---|
zaddcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | zaddcld.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
3 | zaddcl 9252 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 + caddc 7777 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: zadd2cl 9341 eluzadd 9515 eluzsub 9516 qaddcl 9594 fzen 9999 eluzgtdifelfzo 10153 exbtwnzlemstep 10204 qbtwnre 10213 flqaddz 10253 modaddmodup 10343 addmodlteq 10354 uzennn 10392 seq3shft2 10429 expaddzaplem 10519 sqoddm1div8 10629 iser3shft 11309 mptfzshft 11405 fsumshft 11407 fsumshftm 11408 fisumrev2 11409 isumshft 11453 fprodshft 11581 dvds2ln 11786 gcdaddm 11939 uzwodc 11992 lcmgcdlem 12031 divgcdcoprm0 12055 hashdvds 12175 pythagtriplem4 12222 pythagtriplem11 12228 pcaddlem 12292 gzmulcl 12330 4sqlem8 12337 4sqlem10 12339 2sqlem4 13748 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |