![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zaddcld | GIF version |
Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
zaddcld.1 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
Ref | Expression |
---|---|
zaddcld | ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | zaddcld.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
3 | zaddcl 8946 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
4 | 1, 2, 3 | syl2anc 406 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 (class class class)co 5706 + caddc 7503 ℤcz 8906 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 |
This theorem is referenced by: zadd2cl 9032 eluzadd 9204 eluzsub 9205 qaddcl 9277 fzen 9664 eluzgtdifelfzo 9815 exbtwnzlemstep 9866 qbtwnre 9875 flqaddz 9911 modaddmodup 10001 addmodlteq 10012 uzennn 10050 seq3shft2 10087 expaddzaplem 10177 sqoddm1div8 10285 iser3shft 10954 mptfzshft 11050 fsumshft 11052 fsumshftm 11053 fisumrev2 11054 isumshft 11098 dvds2ln 11321 gcdaddm 11467 lcmgcdlem 11551 divgcdcoprm0 11575 hashdvds 11689 |
Copyright terms: Public domain | W3C validator |