ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcld GIF version

Theorem zaddcld 9573
Description: Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
zred.1 (𝜑𝐴 ∈ ℤ)
zaddcld.1 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
zaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℤ)

Proof of Theorem zaddcld
StepHypRef Expression
1 zred.1 . 2 (𝜑𝐴 ∈ ℤ)
2 zaddcld.1 . 2 (𝜑𝐵 ∈ ℤ)
3 zaddcl 9486 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6001   + caddc 8002  cz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  zadd2cl  9576  eluzadd  9751  eluzsub  9752  qaddcl  9830  fzen  10239  elincfzoext  10399  eluzgtdifelfzo  10403  exbtwnzlemstep  10467  qbtwnre  10476  flqaddz  10517  modaddmodup  10609  addmodlteq  10620  uzennn  10658  seq3shft2  10703  seqshft2g  10704  expaddzaplem  10804  sqoddm1div8  10915  ccatlen  11130  ccatass  11143  swrdlen  11184  swrdfv  11185  swrdwrdsymbg  11196  swrdswrd  11237  iser3shft  11857  mptfzshft  11953  fsumshft  11955  fsumshftm  11956  fisumrev2  11957  isumshft  12001  fprodshft  12129  dvds2ln  12335  gcdaddm  12505  uzwodc  12558  lcmgcdlem  12599  divgcdcoprm0  12623  hashdvds  12743  pythagtriplem4  12791  pythagtriplem11  12797  pcaddlem  12862  gzmulcl  12901  4sqlem8  12908  4sqlem10  12910  4sqexercise2  12922  4sqlem11  12924  4sqlem14  12927  4sqlem16  12929  mulgdir  13691  plymullem1  15422  lgsquad2lem1  15760  2lgsoddprmlem2  15785  2sqlem4  15797  2sqlem8  15802
  Copyright terms: Public domain W3C validator