ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz2mulcl GIF version

Theorem uz2mulcl 9584
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
uz2mulcl ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))

Proof of Theorem uz2mulcl
StepHypRef Expression
1 eluzelz 9513 . . 3 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
2 eluzelz 9513 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zmulcl 9282 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ ℤ)
5 eluz2b1 9577 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℤ ∧ 1 < 𝑀))
6 zre 9233 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76anim1i 340 . . . 4 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
85, 7sylbi 121 . . 3 (𝑀 ∈ (ℤ‘2) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
9 eluz2b1 9577 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
10 zre 9233 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110anim1i 340 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
129, 11sylbi 121 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
13 mulgt1 8796 . . . 4 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (1 < 𝑀 ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
1413an4s 588 . . 3 (((𝑀 ∈ ℝ ∧ 1 < 𝑀) ∧ (𝑁 ∈ ℝ ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
158, 12, 14syl2an 289 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑀 · 𝑁))
16 eluz2b1 9577 . 2 ((𝑀 · 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 · 𝑁) ∈ ℤ ∧ 1 < (𝑀 · 𝑁)))
174, 15, 16sylanbrc 417 1 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148   class class class wbr 4000  cfv 5211  (class class class)co 5868  cr 7788  1c1 7790   · cmul 7794   < clt 7969  2c2 8946  cz 9229  cuz 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-ltadd 7905  ax-pre-mulgt0 7906
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4289  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-2 8954  df-n0 9153  df-z 9230  df-uz 9505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator