ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uz2mulcl GIF version

Theorem uz2mulcl 9759
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
uz2mulcl ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))

Proof of Theorem uz2mulcl
StepHypRef Expression
1 eluzelz 9687 . . 3 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
2 eluzelz 9687 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zmulcl 9456 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ ℤ)
5 eluz2b1 9752 . . . 4 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℤ ∧ 1 < 𝑀))
6 zre 9406 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76anim1i 340 . . . 4 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
85, 7sylbi 121 . . 3 (𝑀 ∈ (ℤ‘2) → (𝑀 ∈ ℝ ∧ 1 < 𝑀))
9 eluz2b1 9752 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
10 zre 9406 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110anim1i 340 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
129, 11sylbi 121 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁))
13 mulgt1 8966 . . . 4 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (1 < 𝑀 ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
1413an4s 588 . . 3 (((𝑀 ∈ ℝ ∧ 1 < 𝑀) ∧ (𝑁 ∈ ℝ ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁))
158, 12, 14syl2an 289 . 2 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑀 · 𝑁))
16 eluz2b1 9752 . 2 ((𝑀 · 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 · 𝑁) ∈ ℤ ∧ 1 < (𝑀 · 𝑁)))
174, 15, 16sylanbrc 417 1 ((𝑀 ∈ (ℤ‘2) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑀 · 𝑁) ∈ (ℤ‘2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177   class class class wbr 4054  cfv 5285  (class class class)co 5962  cr 7954  1c1 7956   · cmul 7960   < clt 8137  2c2 9117  cz 9402  cuz 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071  ax-pre-mulgt0 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-n0 9326  df-z 9403  df-uz 9679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator