![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uz2mulcl | GIF version |
Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
uz2mulcl | ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9601 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘2) → 𝑀 ∈ ℤ) | |
2 | eluzelz 9601 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
3 | zmulcl 9370 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ ℤ) |
5 | eluz2b1 9666 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘2) ↔ (𝑀 ∈ ℤ ∧ 1 < 𝑀)) | |
6 | zre 9321 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | anim1i 340 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (𝑀 ∈ ℝ ∧ 1 < 𝑀)) |
8 | 5, 7 | sylbi 121 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘2) → (𝑀 ∈ ℝ ∧ 1 < 𝑀)) |
9 | eluz2b1 9666 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
10 | zre 9321 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
11 | 10 | anim1i 340 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
12 | 9, 11 | sylbi 121 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 ∈ ℝ ∧ 1 < 𝑁)) |
13 | mulgt1 8882 | . . . 4 ⊢ (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (1 < 𝑀 ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁)) | |
14 | 13 | an4s 588 | . . 3 ⊢ (((𝑀 ∈ ℝ ∧ 1 < 𝑀) ∧ (𝑁 ∈ ℝ ∧ 1 < 𝑁)) → 1 < (𝑀 · 𝑁)) |
15 | 8, 12, 14 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → 1 < (𝑀 · 𝑁)) |
16 | eluz2b1 9666 | . 2 ⊢ ((𝑀 · 𝑁) ∈ (ℤ≥‘2) ↔ ((𝑀 · 𝑁) ∈ ℤ ∧ 1 < (𝑀 · 𝑁))) | |
17 | 4, 15, 16 | sylanbrc 417 | 1 ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 1c1 7873 · cmul 7877 < clt 8054 2c2 9033 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |