ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2zd GIF version

Theorem peano2zd 9183
Description: Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
zred.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
peano2zd (𝜑 → (𝐴 + 1) ∈ ℤ)

Proof of Theorem peano2zd
StepHypRef Expression
1 zred.1 . 2 (𝜑𝐴 ∈ ℤ)
2 peano2z 9097 . 2 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
31, 2syl 14 1 (𝜑 → (𝐴 + 1) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  (class class class)co 5774  1c1 7628   + caddc 7630  cz 9061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062
This theorem is referenced by:  elfzp1  9859  fznatpl1  9863  fzdifsuc  9868  fseq1p1m1  9881  flqge  10062  2tnp1ge0ge0  10081  ceiqm1l  10091  addmodlteq  10178  frec2uzzd  10180  frec2uzrdg  10189  uzsinds  10222  seq3f1olemqsumkj  10278  seq3f1olemqsumk  10279  bcp1nk  10515  bcval5  10516  hashfz  10574  resqrexlemdecn  10791  telfsumo  11242  fsumparts  11246  binomlem  11259  geo2sum  11290  cvgratnnlemseq  11302  cvgratnnlemabsle  11303  cvgratnnlemsumlt  11304  cvgratnnlemrate  11306  cvgratz  11308  mertenslemub  11310  mertenslemi1  11311  clim2prod  11315  clim2divap  11316  dvdsfac  11565  2tp1odd  11588  opoe  11599  zsupcllemstep  11645  prmind2  11808  hashdvds  11904  cvgcmp2nlemabs  13241
  Copyright terms: Public domain W3C validator