Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2zd | GIF version |
Description: Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
zred.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Ref | Expression |
---|---|
peano2zd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | peano2z 9248 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: elfzp1 10028 fznatpl1 10032 fzdifsuc 10037 fseq1p1m1 10050 flqge 10238 2tnp1ge0ge0 10257 ceiqm1l 10267 addmodlteq 10354 frec2uzzd 10356 frec2uzrdg 10365 uzsinds 10398 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 bcp1nk 10696 bcval5 10697 hashfz 10756 resqrexlemdecn 10976 telfsumo 11429 fsumparts 11433 binomlem 11446 geo2sum 11477 cvgratnnlemseq 11489 cvgratnnlemabsle 11490 cvgratnnlemsumlt 11491 cvgratnnlemrate 11493 cvgratz 11495 mertenslemub 11497 mertenslemi1 11498 clim2prod 11502 clim2divap 11503 fprodntrivap 11547 fprodeq0 11580 dvdsfac 11820 2tp1odd 11843 opoe 11854 zsupcllemstep 11900 suprzubdc 11907 prmind2 12074 hashdvds 12175 eulerthlemrprm 12183 pcprendvds 12244 nninfdclemcl 12403 nninfdclemp1 12405 lgslem1 13695 lgsval 13699 lgsfvalg 13700 lgsval2lem 13705 lgsvalmod 13714 cvgcmp2nlemabs 14064 |
Copyright terms: Public domain | W3C validator |