ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulval GIF version

Theorem imasmulval 12904
Description: The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddf.u (𝜑𝑈 = (𝐹s 𝑅))
imasaddf.v (𝜑𝑉 = (Base‘𝑅))
imasaddf.r (𝜑𝑅𝑍)
imasmulf.p · = (.r𝑅)
imasmulf.a = (.r𝑈)
Assertion
Ref Expression
imasmulval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑅,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝑋,𝑝   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝑈(𝑞,𝑝,𝑎,𝑏)   𝑋(𝑞,𝑎,𝑏)   𝑌(𝑎,𝑏)   𝑍(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem imasmulval
StepHypRef Expression
1 imasaddf.f . 2 (𝜑𝐹:𝑉onto𝐵)
2 imasaddf.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
3 imasaddf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
4 imasaddf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
5 imasaddf.r . . 3 (𝜑𝑅𝑍)
6 imasmulf.p . . 3 · = (.r𝑅)
7 imasmulf.a . . 3 = (.r𝑈)
83, 4, 1, 5, 6, 7imasmulr 12892 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
9 basfn 12676 . . . 4 Base Fn V
105elexd 2773 . . . 4 (𝜑𝑅 ∈ V)
11 funfvex 5571 . . . . 5 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1211funfni 5354 . . . 4 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
139, 10, 12sylancr 414 . . 3 (𝜑 → (Base‘𝑅) ∈ V)
144, 13eqeltrd 2270 . 2 (𝜑𝑉 ∈ V)
15 mulrslid 12749 . . . . 5 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
1615slotex 12645 . . . 4 (𝑅𝑍 → (.r𝑅) ∈ V)
175, 16syl 14 . . 3 (𝜑 → (.r𝑅) ∈ V)
186, 17eqeltrid 2280 . 2 (𝜑· ∈ V)
191, 2, 8, 14, 18imasaddvallemg 12898 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760   Fn wfn 5249  ontowfo 5252  cfv 5254  (class class class)co 5918  Basecbs 12618  .rcmulr 12696  s cimas 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885
This theorem is referenced by:  imasrng  13452  imasring  13560
  Copyright terms: Public domain W3C validator