![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasmulval | GIF version |
Description: The value of an image structure's ring multiplication. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
imasaddf.f | β’ (π β πΉ:πβontoβπ΅) |
imasaddf.e | β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (πΉβ(π Β· π)))) |
imasaddf.u | β’ (π β π = (πΉ βs π )) |
imasaddf.v | β’ (π β π = (Baseβπ )) |
imasaddf.r | β’ (π β π β π) |
imasmulf.p | β’ Β· = (.rβπ ) |
imasmulf.a | β’ β = (.rβπ) |
Ref | Expression |
---|---|
imasmulval | β’ ((π β§ π β π β§ π β π) β ((πΉβπ) β (πΉβπ)) = (πΉβ(π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | . 2 β’ (π β πΉ:πβontoβπ΅) | |
2 | imasaddf.e | . 2 β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (πΉβ(π Β· π)))) | |
3 | imasaddf.u | . . 3 β’ (π β π = (πΉ βs π )) | |
4 | imasaddf.v | . . 3 β’ (π β π = (Baseβπ )) | |
5 | imasaddf.r | . . 3 β’ (π β π β π) | |
6 | imasmulf.p | . . 3 β’ Β· = (.rβπ ) | |
7 | imasmulf.a | . . 3 β’ β = (.rβπ) | |
8 | 3, 4, 1, 5, 6, 7 | imasmulr 12730 | . 2 β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Β· π))β©}) |
9 | basfn 12520 | . . . 4 β’ Base Fn V | |
10 | 5 | elexd 2751 | . . . 4 β’ (π β π β V) |
11 | funfvex 5533 | . . . . 5 β’ ((Fun Base β§ π β dom Base) β (Baseβπ ) β V) | |
12 | 11 | funfni 5317 | . . . 4 β’ ((Base Fn V β§ π β V) β (Baseβπ ) β V) |
13 | 9, 10, 12 | sylancr 414 | . . 3 β’ (π β (Baseβπ ) β V) |
14 | 4, 13 | eqeltrd 2254 | . 2 β’ (π β π β V) |
15 | mulrslid 12590 | . . . . 5 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
16 | 15 | slotex 12489 | . . . 4 β’ (π β π β (.rβπ ) β V) |
17 | 5, 16 | syl 14 | . . 3 β’ (π β (.rβπ ) β V) |
18 | 6, 17 | eqeltrid 2264 | . 2 β’ (π β Β· β V) |
19 | 1, 2, 8, 14, 18 | imasaddvallemg 12736 | 1 β’ ((π β§ π β π β§ π β π) β ((πΉβπ) β (πΉβπ)) = (πΉβ(π Β· π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 Vcvv 2738 Fn wfn 5212 βontoβwfo 5215 βcfv 5217 (class class class)co 5875 Basecbs 12462 .rcmulr 12537 βs cimas 12720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-tp 3601 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-ltxr 7997 df-inn 8920 df-2 8978 df-3 8979 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mulr 12550 df-iimas 12723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |