ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negexsr GIF version

Theorem negexsr 7721
Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
negexsr (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem negexsr
StepHypRef Expression
1 m1r 7701 . . 3 -1RR
2 mulclsr 7703 . . 3 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
31, 2mpan2 423 . 2 (𝐴R → (𝐴 ·R -1R) ∈ R)
4 pn0sr 7720 . 2 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
5 oveq2 5858 . . . 4 (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R)))
65eqeq1d 2179 . . 3 (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R))
76rspcev 2834 . 2 (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥R (𝐴 +R 𝑥) = 0R)
83, 4, 7syl2anc 409 1 (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wrex 2449  (class class class)co 5850  Rcnr 7246  0Rc0r 7247  -1Rcm1r 7249   +R cplr 7250   ·R cmr 7251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-2o 6393  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-enq0 7373  df-nq0 7374  df-0nq0 7375  df-plq0 7376  df-mq0 7377  df-inp 7415  df-i1p 7416  df-iplp 7417  df-imp 7418  df-enr 7675  df-nr 7676  df-plr 7677  df-mr 7678  df-0r 7680  df-1r 7681  df-m1r 7682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator