| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negexsr | GIF version | ||
| Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
| Ref | Expression |
|---|---|
| negexsr | ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m1r 7935 | . . 3 ⊢ -1R ∈ R | |
| 2 | mulclsr 7937 | . . 3 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R -1R) ∈ R) |
| 4 | pn0sr 7954 | . 2 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
| 5 | oveq2 6008 | . . . 4 ⊢ (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R))) | |
| 6 | 5 | eqeq1d 2238 | . . 3 ⊢ (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R)) |
| 7 | 6 | rspcev 2907 | . 2 ⊢ (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
| 8 | 3, 4, 7 | syl2anc 411 | 1 ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 (class class class)co 6000 Rcnr 7480 0Rc0r 7481 -1Rcm1r 7483 +R cplr 7484 ·R cmr 7485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-imp 7652 df-enr 7909 df-nr 7910 df-plr 7911 df-mr 7912 df-0r 7914 df-1r 7915 df-m1r 7916 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |