![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negexsr | GIF version |
Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
Ref | Expression |
---|---|
negexsr | ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m1r 7781 | . . 3 ⊢ -1R ∈ R | |
2 | mulclsr 7783 | . . 3 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R -1R) ∈ R) |
4 | pn0sr 7800 | . 2 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
5 | oveq2 5904 | . . . 4 ⊢ (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R))) | |
6 | 5 | eqeq1d 2198 | . . 3 ⊢ (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R)) |
7 | 6 | rspcev 2856 | . 2 ⊢ (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
8 | 3, 4, 7 | syl2anc 411 | 1 ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 (class class class)co 5896 Rcnr 7326 0Rc0r 7327 -1Rcm1r 7329 +R cplr 7330 ·R cmr 7331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-irdg 6395 df-1o 6441 df-2o 6442 df-oadd 6445 df-omul 6446 df-er 6559 df-ec 6561 df-qs 6565 df-ni 7333 df-pli 7334 df-mi 7335 df-lti 7336 df-plpq 7373 df-mpq 7374 df-enq 7376 df-nqqs 7377 df-plqqs 7378 df-mqqs 7379 df-1nqqs 7380 df-rq 7381 df-ltnqqs 7382 df-enq0 7453 df-nq0 7454 df-0nq0 7455 df-plq0 7456 df-mq0 7457 df-inp 7495 df-i1p 7496 df-iplp 7497 df-imp 7498 df-enr 7755 df-nr 7756 df-plr 7757 df-mr 7758 df-0r 7760 df-1r 7761 df-m1r 7762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |