ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecqusaddcl GIF version

Theorem ecqusaddcl 13771
Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
ecqusaddd.b 𝐵 = (Base‘𝑅)
ecqusaddd.g = (𝑅 ~QG 𝐼)
ecqusaddd.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
ecqusaddcl ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) ∈ (Base‘𝑄))

Proof of Theorem ecqusaddcl
StepHypRef Expression
1 ecqusaddd.i . . 3 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
2 ecqusaddd.b . . 3 𝐵 = (Base‘𝑅)
3 ecqusaddd.g . . 3 = (𝑅 ~QG 𝐼)
4 ecqusaddd.q . . 3 𝑄 = (𝑅 /s )
51, 2, 3, 4ecqusaddd 13770 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
6 nsgsubg 13737 . . . . 5 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
7 subgrcl 13711 . . . . 5 (𝐼 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
81, 6, 73syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
98adantr 276 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝑅 ∈ Grp)
108anim1i 340 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝑅 ∈ Grp ∧ (𝐴𝐵𝐶𝐵)))
11 3anass 1006 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵) ↔ (𝑅 ∈ Grp ∧ (𝐴𝐵𝐶𝐵)))
1210, 11sylibr 134 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵))
13 eqid 2229 . . . . 5 (+g𝑅) = (+g𝑅)
142, 13grpcl 13536 . . . 4 ((𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵) → (𝐴(+g𝑅)𝐶) ∈ 𝐵)
1512, 14syl 14 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐴(+g𝑅)𝐶) ∈ 𝐵)
161adantr 276 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → 𝐼 ∈ (NrmSGrp‘𝑅))
17 eqid 2229 . . . 4 (Base‘𝑄) = (Base‘𝑄)
183, 4, 2, 17quseccl0g 13763 . . 3 ((𝑅 ∈ Grp ∧ (𝐴(+g𝑅)𝐶) ∈ 𝐵𝐼 ∈ (NrmSGrp‘𝑅)) → [(𝐴(+g𝑅)𝐶)] ∈ (Base‘𝑄))
199, 15, 16, 18syl3anc 1271 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] ∈ (Base‘𝑄))
205, 19eqeltrrd 2307 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) ∈ (Base‘𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  [cec 6676  Basecbs 13027  +gcplusg 13105   /s cqus 13328  Grpcgrp 13528  SubGrpcsubg 13699  NrmSGrpcnsg 13700   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-nsg 13703  df-eqg 13704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator