| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ecqusaddcl | GIF version | ||
| Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| ecqusaddd.i | ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
| ecqusaddd.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ecqusaddd.g | ⊢ ∼ = (𝑅 ~QG 𝐼) | 
| ecqusaddd.q | ⊢ 𝑄 = (𝑅 /s ∼ ) | 
| Ref | Expression | 
|---|---|
| ecqusaddcl | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) ∈ (Base‘𝑄)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ecqusaddd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | |
| 2 | ecqusaddd.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ecqusaddd.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 4 | ecqusaddd.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 5 | 1, 2, 3, 4 | ecqusaddd 13368 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) | 
| 6 | nsgsubg 13335 | . . . . 5 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 7 | subgrcl 13309 | . . . . 5 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp) | |
| 8 | 1, 6, 7 | 3syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝑅 ∈ Grp) | 
| 10 | 8 | anim1i 340 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝑅 ∈ Grp ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | 
| 11 | 3anass 984 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ (𝑅 ∈ Grp ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
| 12 | 10, 11 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) | 
| 13 | eqid 2196 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 14 | 2, 13 | grpcl 13140 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐴(+g‘𝑅)𝐶) ∈ 𝐵) | 
| 15 | 12, 14 | syl 14 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐴(+g‘𝑅)𝐶) ∈ 𝐵) | 
| 16 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
| 17 | eqid 2196 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 18 | 3, 4, 2, 17 | quseccl0g 13361 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝐴(+g‘𝑅)𝐶) ∈ 𝐵 ∧ 𝐼 ∈ (NrmSGrp‘𝑅)) → [(𝐴(+g‘𝑅)𝐶)] ∼ ∈ (Base‘𝑄)) | 
| 19 | 9, 15, 16, 18 | syl3anc 1249 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ ∈ (Base‘𝑄)) | 
| 20 | 5, 19 | eqeltrrd 2274 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) ∈ (Base‘𝑄)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 [cec 6590 Basecbs 12678 +gcplusg 12755 /s cqus 12943 Grpcgrp 13132 SubGrpcsubg 13297 NrmSGrpcnsg 13298 ~QG cqg 13299 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-er 6592 df-ec 6594 df-qs 6598 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-0g 12929 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-nsg 13301 df-eqg 13302 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |