![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ridl0 | GIF version |
Description: Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.) |
Ref | Expression |
---|---|
ridl0.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
ridl0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ridl0 | ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | ridl0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | oppr0g 13448 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (0g‘(oppr‘𝑅))) |
4 | 3 | sneqd 3620 | . 2 ⊢ (𝑅 ∈ Ring → { 0 } = {(0g‘(oppr‘𝑅))}) |
5 | 1 | opprring 13446 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
6 | ridl0.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
7 | eqid 2189 | . . . 4 ⊢ (0g‘(oppr‘𝑅)) = (0g‘(oppr‘𝑅)) | |
8 | 6, 7 | lidl0 13822 | . . 3 ⊢ ((oppr‘𝑅) ∈ Ring → {(0g‘(oppr‘𝑅))} ∈ 𝑈) |
9 | 5, 8 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → {(0g‘(oppr‘𝑅))} ∈ 𝑈) |
10 | 4, 9 | eqeltrd 2266 | 1 ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 {csn 3607 ‘cfv 5235 0gc0g 12764 Ringcrg 13367 opprcoppr 13434 LIdealclidl 13800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-tpos 6271 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-plusg 12605 df-mulr 12606 df-sca 12608 df-vsca 12609 df-ip 12610 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-subg 13126 df-mgp 13292 df-ur 13331 df-ring 13369 df-oppr 13435 df-subrg 13583 df-lmod 13622 df-lssm 13686 df-sra 13768 df-rgmod 13769 df-lidl 13802 |
This theorem is referenced by: 2idl0 13844 |
Copyright terms: Public domain | W3C validator |