| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitcld | GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| unitcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| unitcld | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcld.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | eqidd 2197 | . 2 ⊢ (𝜑 → (∥r‘𝑅) = (∥r‘𝑅)) | |
| 3 | unitcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 4 | unitcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 5 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 6 | eqidd 2197 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑅)) | |
| 7 | eqidd 2197 | . . . . 5 ⊢ (𝜑 → (oppr‘𝑅) = (oppr‘𝑅)) | |
| 8 | eqidd 2197 | . . . . 5 ⊢ (𝜑 → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
| 9 | 5, 6, 2, 7, 8, 3 | isunitd 13740 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 10 | 4, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 11 | 10 | simpld 112 | . 2 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 12 | 1, 2, 3, 11 | dvdsrcld 13731 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 Basecbs 12705 1rcur 13593 SRingcsrg 13597 opprcoppr 13701 ∥rcdsr 13720 Unitcui 13721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-plusg 12795 df-mulr 12796 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-mgp 13555 df-srg 13598 df-dvdsr 13723 df-unit 13724 |
| This theorem is referenced by: unitssd 13743 unitmulcl 13747 unitgrp 13750 ringinvcl 13759 unitnegcl 13764 dvrvald 13768 unitdvcl 13770 dvrid 13771 dvrcan1 13774 dvrcan3 13775 dvreq1 13776 dvrdir 13777 elrhmunit 13811 subrguss 13870 subrginv 13871 subrgunit 13873 unitrrg 13901 |
| Copyright terms: Public domain | W3C validator |