![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitcld | GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
unitcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
unitcld | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcld.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | eqidd 2178 | . 2 ⊢ (𝜑 → (∥r‘𝑅) = (∥r‘𝑅)) | |
3 | unitcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | unitcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
5 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
6 | eqidd 2178 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑅)) | |
7 | eqidd 2178 | . . . . 5 ⊢ (𝜑 → (oppr‘𝑅) = (oppr‘𝑅)) | |
8 | eqidd 2178 | . . . . 5 ⊢ (𝜑 → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
9 | 5, 6, 2, 7, 8, 3 | isunitd 13280 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
10 | 4, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
11 | 10 | simpld 112 | . 2 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
12 | 1, 2, 3, 11 | dvdsrcld 13271 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 Basecbs 12464 1rcur 13147 SRingcsrg 13151 opprcoppr 13244 ∥rcdsr 13260 Unitcui 13261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-plusg 12551 df-mulr 12552 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-mgp 13136 df-srg 13152 df-dvdsr 13263 df-unit 13264 |
This theorem is referenced by: unitssd 13283 unitmulcl 13287 unitgrp 13290 ringinvcl 13299 unitnegcl 13304 dvrvald 13308 unitdvcl 13310 dvrid 13311 dvrcan1 13314 dvrcan3 13315 dvreq1 13316 dvrdir 13317 subrguss 13362 subrginv 13363 subrgunit 13365 |
Copyright terms: Public domain | W3C validator |