![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitcld | GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
unitcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
unitcld | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcld.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | eqidd 2194 | . 2 ⊢ (𝜑 → (∥r‘𝑅) = (∥r‘𝑅)) | |
3 | unitcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | unitcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
5 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
6 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑅)) | |
7 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (oppr‘𝑅) = (oppr‘𝑅)) | |
8 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
9 | 5, 6, 2, 7, 8, 3 | isunitd 13602 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
10 | 4, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
11 | 10 | simpld 112 | . 2 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
12 | 1, 2, 3, 11 | dvdsrcld 13593 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 Basecbs 12618 1rcur 13455 SRingcsrg 13459 opprcoppr 13563 ∥rcdsr 13582 Unitcui 13583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mgp 13417 df-srg 13460 df-dvdsr 13585 df-unit 13586 |
This theorem is referenced by: unitssd 13605 unitmulcl 13609 unitgrp 13612 ringinvcl 13621 unitnegcl 13626 dvrvald 13630 unitdvcl 13632 dvrid 13633 dvrcan1 13636 dvrcan3 13637 dvreq1 13638 dvrdir 13639 elrhmunit 13673 subrguss 13732 subrginv 13733 subrgunit 13735 unitrrg 13763 |
Copyright terms: Public domain | W3C validator |