![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitcld | GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
unitcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
unitcld | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcld.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | eqidd 2194 | . 2 ⊢ (𝜑 → (∥r‘𝑅) = (∥r‘𝑅)) | |
3 | unitcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | unitcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
5 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
6 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑅)) | |
7 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (oppr‘𝑅) = (oppr‘𝑅)) | |
8 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
9 | 5, 6, 2, 7, 8, 3 | isunitd 13605 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
10 | 4, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
11 | 10 | simpld 112 | . 2 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
12 | 1, 2, 3, 11 | dvdsrcld 13596 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 Basecbs 12621 1rcur 13458 SRingcsrg 13462 opprcoppr 13566 ∥rcdsr 13585 Unitcui 13586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-mgp 13420 df-srg 13463 df-dvdsr 13588 df-unit 13589 |
This theorem is referenced by: unitssd 13608 unitmulcl 13612 unitgrp 13615 ringinvcl 13624 unitnegcl 13629 dvrvald 13633 unitdvcl 13635 dvrid 13636 dvrcan1 13639 dvrcan3 13640 dvreq1 13641 dvrdir 13642 elrhmunit 13676 subrguss 13735 subrginv 13736 subrgunit 13738 unitrrg 13766 |
Copyright terms: Public domain | W3C validator |