| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitcld | GIF version | ||
| Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| unitcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| unitcld | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcld.1 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | eqidd 2230 | . 2 ⊢ (𝜑 → (∥r‘𝑅) = (∥r‘𝑅)) | |
| 3 | unitcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 4 | unitcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 5 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 6 | eqidd 2230 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑅)) | |
| 7 | eqidd 2230 | . . . . 5 ⊢ (𝜑 → (oppr‘𝑅) = (oppr‘𝑅)) | |
| 8 | eqidd 2230 | . . . . 5 ⊢ (𝜑 → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
| 9 | 5, 6, 2, 7, 8, 3 | isunitd 14064 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 10 | 4, 9 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 11 | 10 | simpld 112 | . 2 ⊢ (𝜑 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
| 12 | 1, 2, 3, 11 | dvdsrcld 14055 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 Basecbs 13027 1rcur 13917 SRingcsrg 13921 opprcoppr 14025 ∥rcdsr 14044 Unitcui 14045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mgp 13879 df-srg 13922 df-dvdsr 14047 df-unit 14048 |
| This theorem is referenced by: unitssd 14067 unitmulcl 14071 unitgrp 14074 ringinvcl 14083 unitnegcl 14088 dvrvald 14092 unitdvcl 14094 dvrid 14095 dvrcan1 14098 dvrcan3 14099 dvreq1 14100 dvrdir 14101 elrhmunit 14135 subrguss 14194 subrginv 14195 subrgunit 14197 unitrrg 14225 |
| Copyright terms: Public domain | W3C validator |