ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitcld GIF version

Theorem unitcld 14066
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
unitcld.1 (𝜑𝐵 = (Base‘𝑅))
unitcld.2 (𝜑𝑈 = (Unit‘𝑅))
unitcld.r (𝜑𝑅 ∈ SRing)
unitcld.x (𝜑𝑋𝑈)
Assertion
Ref Expression
unitcld (𝜑𝑋𝐵)

Proof of Theorem unitcld
StepHypRef Expression
1 unitcld.1 . 2 (𝜑𝐵 = (Base‘𝑅))
2 eqidd 2230 . 2 (𝜑 → (∥r𝑅) = (∥r𝑅))
3 unitcld.r . 2 (𝜑𝑅 ∈ SRing)
4 unitcld.x . . . 4 (𝜑𝑋𝑈)
5 unitcld.2 . . . . 5 (𝜑𝑈 = (Unit‘𝑅))
6 eqidd 2230 . . . . 5 (𝜑 → (1r𝑅) = (1r𝑅))
7 eqidd 2230 . . . . 5 (𝜑 → (oppr𝑅) = (oppr𝑅))
8 eqidd 2230 . . . . 5 (𝜑 → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
95, 6, 2, 7, 8, 3isunitd 14064 . . . 4 (𝜑 → (𝑋𝑈 ↔ (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅))))
104, 9mpbid 147 . . 3 (𝜑 → (𝑋(∥r𝑅)(1r𝑅) ∧ 𝑋(∥r‘(oppr𝑅))(1r𝑅)))
1110simpld 112 . 2 (𝜑𝑋(∥r𝑅)(1r𝑅))
121, 2, 3, 11dvdsrcld 14055 1 (𝜑𝑋𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5317  Basecbs 13027  1rcur 13917  SRingcsrg 13921  opprcoppr 14025  rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mgp 13879  df-srg 13922  df-dvdsr 14047  df-unit 14048
This theorem is referenced by:  unitssd  14067  unitmulcl  14071  unitgrp  14074  ringinvcl  14083  unitnegcl  14088  dvrvald  14092  unitdvcl  14094  dvrid  14095  dvrcan1  14098  dvrcan3  14099  dvreq1  14100  dvrdir  14101  elrhmunit  14135  subrguss  14194  subrginv  14195  subrgunit  14197  unitrrg  14225
  Copyright terms: Public domain W3C validator