| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > usgrumgruspgr | GIF version | ||
| Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020.) |
| Ref | Expression |
|---|---|
| usgrumgruspgr | ⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrumgr 15982 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph) | |
| 2 | usgruspgr 15981 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph)) |
| 4 | eqid 2229 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2229 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 4, 5 | uspgrfen 15957 | . . . 4 ⊢ (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 7 | edgvalg 15860 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
| 8 | umgredgssen 15938 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) | |
| 9 | 7, 8 | eqsstrrd 3261 | . . . 4 ⊢ (𝐺 ∈ UMGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 10 | f1ssr 5538 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) | |
| 11 | 6, 9, 10 | syl2anr 290 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 12 | 4, 5 | isusgren 15956 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 13 | 12 | adantr 276 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 14 | 11, 13 | mpbird 167 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph) → 𝐺 ∈ USGraph) |
| 15 | 3, 14 | impbii 126 | 1 ⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 713 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 𝒫 cpw 3649 class class class wbr 4083 dom cdm 4719 ran crn 4720 –1-1→wf1 5315 ‘cfv 5318 1oc1o 6555 2oc2o 6556 ≈ cen 6885 Vtxcvtx 15813 iEdgciedg 15814 Edgcedg 15858 UMGraphcumgr 15892 USPGraphcuspgr 15951 USGraphcusgr 15952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-sub 8319 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-dec 9579 df-ndx 13035 df-slot 13036 df-base 13038 df-edgf 15806 df-vtx 15815 df-iedg 15816 df-edg 15859 df-umgren 15894 df-uspgren 15953 df-usgren 15954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |