Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltneii | Structured version Visualization version GIF version |
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltneii | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . . 3 ⊢ 𝐴 < 𝐵 | |
3 | 1, 2 | gtneii 11017 | . 2 ⊢ 𝐵 ≠ 𝐴 |
4 | 3 | necomi 2997 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℝcr 10801 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: 1ne2 12111 f1oun2prg 14558 geo2sum 15513 3dvds 15968 basendxnplusgndx 16918 basendxnmulrndx 16931 basendxnmulrndxOLD 16932 plusgndxnmulrndx 16933 slotsbhcdif 17044 slotsbhcdifOLD 17045 oppchomfvalOLD 17341 oppcbasOLD 17346 rescbasOLD 17459 rescabs 17464 odubas 17925 opprlemOLD 19783 rmodislmodOLD 20107 srasca 20362 sravsca 20363 cnfldfun 20522 zlmlemOLD 20631 znbaslemOLD 20655 thlbas 20813 thlle 20814 opsrbaslemOLD 21161 tuslemOLD 23327 setsmsbas 23536 tnglemOLD 23703 ppiub 26257 2lgslem3 26457 2lgslem4 26459 addsq2nreurex 26497 ttgval 27140 ttglemOLD 27142 basendxnedgfndx 27268 structvtxvallem 27293 usgrexmpldifpr 27528 upgr4cycl4dv4e 28450 konigsbergiedgw 28513 konigsberglem3 28519 konigsberglem5 28521 ex-dif 28688 ex-id 28699 ex-fv 28708 ex-mod 28714 9p10ne21 28735 resvbasOLD 31435 resvplusgOLD 31437 resvmulrOLD 31441 hlhilslemOLD 39880 rabren3dioph 40553 mnringbasedOLD 41719 mnringaddgdOLD 41725 xrlexaddrp 42781 fourierdlem102 43639 fourierdlem114 43651 fouriersw 43662 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 zlmodzxznm 45726 prstcleval 46237 prstcocval 46239 2p2ne5 46388 |
Copyright terms: Public domain | W3C validator |