Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltneii | Structured version Visualization version GIF version |
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltneii | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . . 3 ⊢ 𝐴 < 𝐵 | |
3 | 1, 2 | gtneii 10795 | . 2 ⊢ 𝐵 ≠ 𝐴 |
4 | 3 | necomi 3005 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ≠ wne 2951 class class class wbr 5035 ℝcr 10579 < clt 10718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-ltxr 10723 |
This theorem is referenced by: 1ne2 11887 f1oun2prg 14331 geo2sum 15282 3dvds 15737 plusgndxnmulrndx 16680 basendxnmulrndx 16681 slotsbhcdif 16756 oppchomfval 17047 oppcbas 17051 rescbas 17163 rescabs 17167 odubas 17814 opprlem 19454 rmodislmod 19775 srasca 20026 sravsca 20027 cnfldfun 20183 zlmlem 20291 zlmsca 20295 znbaslem 20311 thlbas 20466 thlle 20467 opsrbaslem 20814 tuslem 22973 setsmsbas 23182 tnglem 23347 ppiub 25892 2lgslem3 26092 2lgslem4 26094 addsq2nreurex 26132 ttgval 26773 ttglem 26774 slotsbaseefdif 26892 structvtxvallem 26917 usgrexmpldifpr 27152 upgr4cycl4dv4e 28074 konigsbergiedgw 28137 konigsberglem3 28143 konigsberglem5 28145 ex-dif 28312 ex-id 28323 ex-fv 28332 ex-mod 28338 9p10ne21 28359 resvbas 31061 resvplusg 31062 resvmulr 31064 hlhilslem 39540 rabren3dioph 40157 mnringbased 41324 mnringaddgd 41329 xrlexaddrp 42380 fourierdlem102 43244 fourierdlem114 43256 fouriersw 43267 nnsum4primesodd 44709 nnsum4primesoddALTV 44710 zlmodzxznm 45299 2p2ne5 45790 |
Copyright terms: Public domain | W3C validator |