MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfi Structured version   Visualization version   GIF version

Theorem mptfi 9278
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptfi (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptfi
StepHypRef Expression
1 funmpt 6538 . . 3 Fun (𝑥𝐴𝐵)
2 funfn 6530 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
31, 2mpbi 230 . 2 (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵)
4 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54dmmptss 6202 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
6 ssfi 9114 . . 3 ((𝐴 ∈ Fin ∧ dom (𝑥𝐴𝐵) ⊆ 𝐴) → dom (𝑥𝐴𝐵) ∈ Fin)
75, 6mpan2 691 . 2 (𝐴 ∈ Fin → dom (𝑥𝐴𝐵) ∈ Fin)
8 fnfi 9119 . 2 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ Fin) → (𝑥𝐴𝐵) ∈ Fin)
93, 7, 8sylancr 587 1 (𝐴 ∈ Fin → (𝑥𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3911  cmpt 5183  dom cdm 5631  Fun wfun 6493   Fn wfn 6494  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-fin 8899
This theorem is referenced by:  abrexfi  9279  ccatalpha  14534  prdsmet  24234  gsummpt2co  32961  elrgspnsubrunlem1  33171  carsgclctunlem2  34283  carsgclctunlem3  34284  breprexplema  34594  istotbnd3  37738  sstotbnd  37742  totbndbnd  37756  rnmptfi  45138  choicefi  45167  stoweidlem39  46010  fourierdlem31  46109  aacllem  49763
  Copyright terms: Public domain W3C validator