| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfi | Structured version Visualization version GIF version | ||
| Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| mptfi | ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6538 | . . 3 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funfn 6530 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | dmmptss 6202 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 6 | ssfi 9114 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
| 7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Fin → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 8 | fnfi 9119 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
| 9 | 3, 7, 8 | sylancr 587 | 1 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 ↦ cmpt 5183 dom cdm 5631 Fun wfun 6493 Fn wfn 6494 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-fin 8899 |
| This theorem is referenced by: abrexfi 9279 ccatalpha 14534 prdsmet 24234 gsummpt2co 32961 elrgspnsubrunlem1 33171 carsgclctunlem2 34283 carsgclctunlem3 34284 breprexplema 34594 istotbnd3 37738 sstotbnd 37742 totbndbnd 37756 rnmptfi 45138 choicefi 45167 stoweidlem39 46010 fourierdlem31 46109 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |