| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptfi | Structured version Visualization version GIF version | ||
| Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| mptfi | ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6574 | . . 3 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funfn 6566 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 4 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | dmmptss 6230 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 6 | ssfi 9187 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
| 7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Fin → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 8 | fnfi 9192 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
| 9 | 3, 7, 8 | sylancr 587 | 1 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 ↦ cmpt 5201 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 |
| This theorem is referenced by: abrexfi 9364 ccatalpha 14611 prdsmet 24309 gsummpt2co 33042 elrgspnsubrunlem1 33242 carsgclctunlem2 34351 carsgclctunlem3 34352 breprexplema 34662 istotbnd3 37795 sstotbnd 37799 totbndbnd 37813 rnmptfi 45195 choicefi 45224 stoweidlem39 46068 fourierdlem31 46167 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |