![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptfi | Structured version Visualization version GIF version |
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
mptfi | ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6605 | . . 3 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funfn 6597 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
4 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | dmmptss 6262 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
6 | ssfi 9211 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Fin → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
8 | fnfi 9215 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
9 | 3, 7, 8 | sylancr 587 | 1 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3962 ↦ cmpt 5230 dom cdm 5688 Fun wfun 6556 Fn wfn 6557 Fincfn 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-1o 8504 df-en 8984 df-fin 8987 |
This theorem is referenced by: abrexfi 9389 ccatalpha 14627 prdsmet 24395 gsummpt2co 33033 carsgclctunlem2 34300 carsgclctunlem3 34301 breprexplema 34623 istotbnd3 37757 sstotbnd 37761 totbndbnd 37775 rnmptfi 45113 choicefi 45142 stoweidlem39 45994 fourierdlem31 46093 aacllem 49031 |
Copyright terms: Public domain | W3C validator |