Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptfi | Structured version Visualization version GIF version |
Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
mptfi | ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6501 | . . 3 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funfn 6493 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
4 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | dmmptss 6159 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
6 | ssfi 8994 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
7 | 5, 6 | mpan2 689 | . 2 ⊢ (𝐴 ∈ Fin → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
8 | fnfi 9002 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) | |
9 | 3, 7, 8 | sylancr 588 | 1 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3892 ↦ cmpt 5164 dom cdm 5600 Fun wfun 6452 Fn wfn 6453 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-1o 8328 df-en 8765 df-fin 8768 |
This theorem is referenced by: abrexfi 9163 ccatalpha 14343 prdsmet 23568 gsummpt2co 31353 carsgclctunlem2 32331 carsgclctunlem3 32332 breprexplema 32655 istotbnd3 35973 sstotbnd 35977 totbndbnd 35991 rnmptfi 42751 choicefi 42784 stoweidlem39 43629 fourierdlem31 43728 aacllem 46563 |
Copyright terms: Public domain | W3C validator |