|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ac6s4 | Structured version Visualization version GIF version | ||
| Description: Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| ac6s4.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| ac6s4 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0 4352 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵) | 
| 3 | ac6s4.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | eleq1 2828 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ∈ 𝐵 ↔ (𝑓‘𝑥) ∈ 𝐵)) | |
| 5 | 3, 4 | ac6s2 10527 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | 
| 6 | 2, 5 | sylbi 217 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 Vcvv 3479 ∅c0 4332 Fn wfn 6555 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 ax-ac2 10504 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-en 8987 df-r1 9805 df-rank 9806 df-card 9980 df-ac 10157 | 
| This theorem is referenced by: ac6s5 10532 ac9s 10534 | 
| Copyright terms: Public domain | W3C validator |