MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2z Structured version   Visualization version   GIF version

Theorem cxpmul2z 24778
Description: Generalize cxpmul2 24776 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpmul2z (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ)) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem cxpmul2z
StepHypRef Expression
1 elznn0 11681 . . 3 (𝐶 ∈ ℤ ↔ (𝐶 ∈ ℝ ∧ (𝐶 ∈ ℕ0 ∨ -𝐶 ∈ ℕ0)))
2 cxpmul2 24776 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
323expia 1151 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
43adantlr 707 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
54adantr 473 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
6 simplll 792 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → 𝐴 ∈ ℂ)
7 simplr 786 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → 𝐵 ∈ ℂ)
8 simprr 790 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → -𝐶 ∈ ℕ0)
9 cxpmul2 24776 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · -𝐶)) = ((𝐴𝑐𝐵)↑-𝐶))
106, 7, 8, 9syl3anc 1491 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐(𝐵 · -𝐶)) = ((𝐴𝑐𝐵)↑-𝐶))
1110oveq2d 6894 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (1 / (𝐴𝑐(𝐵 · -𝐶))) = (1 / ((𝐴𝑐𝐵)↑-𝐶)))
12 simprl 788 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → 𝐶 ∈ ℝ)
1312recnd 10357 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → 𝐶 ∈ ℂ)
147, 13mulneg2d 10776 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
1514negeqd 10566 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → -(𝐵 · -𝐶) = --(𝐵 · 𝐶))
167, 13mulcld 10349 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐵 · 𝐶) ∈ ℂ)
1716negnegd 10675 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → --(𝐵 · 𝐶) = (𝐵 · 𝐶))
1815, 17eqtrd 2833 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → -(𝐵 · -𝐶) = (𝐵 · 𝐶))
1918oveq2d 6894 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐-(𝐵 · -𝐶)) = (𝐴𝑐(𝐵 · 𝐶)))
20 simpllr 794 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → 𝐴 ≠ 0)
2113negcld 10671 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → -𝐶 ∈ ℂ)
227, 21mulcld 10349 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐵 · -𝐶) ∈ ℂ)
23 cxpneg 24768 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝐵 · -𝐶) ∈ ℂ) → (𝐴𝑐-(𝐵 · -𝐶)) = (1 / (𝐴𝑐(𝐵 · -𝐶))))
246, 20, 22, 23syl3anc 1491 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐-(𝐵 · -𝐶)) = (1 / (𝐴𝑐(𝐵 · -𝐶))))
2519, 24eqtr3d 2835 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐(𝐵 · 𝐶)) = (1 / (𝐴𝑐(𝐵 · -𝐶))))
26 cxpcl 24761 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
276, 7, 26syl2anc 580 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐𝐵) ∈ ℂ)
28 expneg2 13123 . . . . . . . 8 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ -𝐶 ∈ ℕ0) → ((𝐴𝑐𝐵)↑𝐶) = (1 / ((𝐴𝑐𝐵)↑-𝐶)))
2927, 13, 8, 28syl3anc 1491 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → ((𝐴𝑐𝐵)↑𝐶) = (1 / ((𝐴𝑐𝐵)↑-𝐶)))
3011, 25, 293eqtr4d 2843 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℝ ∧ -𝐶 ∈ ℕ0)) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
3130expr 449 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
325, 31jaod 886 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℕ0 ∨ -𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
3332expimpd 446 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) → ((𝐶 ∈ ℝ ∧ (𝐶 ∈ ℕ0 ∨ -𝐶 ∈ ℕ0)) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
341, 33syl5bi 234 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℤ → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
3534impr 447 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ)) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157  wne 2971  (class class class)co 6878  cc 10222  cr 10223  0cc0 10224  1c1 10225   · cmul 10229  -cneg 10557   / cdiv 10976  0cn0 11580  cz 11666  cexp 13114  𝑐ccxp 24643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ioc 12429  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-ef 15134  df-sin 15136  df-cos 15137  df-pi 15139  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972  df-log 24644  df-cxp 24645
This theorem is referenced by:  cxpmul2zd  24803
  Copyright terms: Public domain W3C validator