| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version | ||
| Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfid.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| smfid.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| smfid.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| Ref | Expression |
|---|---|
| smfid | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfid.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | sseldd 3949 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 5 | 4 | fmpttd 7089 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥):𝐴⟶ℝ) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → 𝑦 ≤ 𝑧) | |
| 7 | eqid 2730 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 11 | 8, 9, 10, 10 | fvmptd 6977 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
| 12 | 11 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
| 13 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
| 14 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 15 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
| 16 | 13, 14, 15, 15 | fvmptd 6977 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
| 17 | 16 | ad4ant13 751 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
| 18 | 12, 17 | breq12d 5122 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → (((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) ↔ 𝑦 ≤ 𝑧)) |
| 19 | 6, 18 | mpbird 257 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧)) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 21 | 20 | ralrimiva 3126 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 22 | 21 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 23 | smfid.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 24 | smfid.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 25 | 1, 5, 22, 23, 24 | incsmf 46733 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 class class class wbr 5109 ↦ cmpt 5190 ran crn 5641 ‘cfv 6513 ℝcr 11073 ≤ cle 11215 (,)cioo 13312 topGenctg 17406 SalGencsalgen 46303 SMblFncsmblfn 46686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-ioo 13316 df-ioc 13317 df-ico 13318 df-fl 13760 df-rest 17391 df-topgen 17412 df-top 22787 df-bases 22839 df-salg 46300 df-salgen 46304 df-smblfn 46687 |
| This theorem is referenced by: smf2id 46792 |
| Copyright terms: Public domain | W3C validator |