![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version |
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfid.j | β’ π½ = (topGenβran (,)) |
smfid.b | β’ π΅ = (SalGenβπ½) |
smfid.a | β’ (π β π΄ β β) |
Ref | Expression |
---|---|
smfid | β’ (π β (π₯ β π΄ β¦ π₯) β (SMblFnβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfid.a | . 2 β’ (π β π΄ β β) | |
2 | 1 | adantr 480 | . . . 4 β’ ((π β§ π₯ β π΄) β π΄ β β) |
3 | simpr 484 | . . . 4 β’ ((π β§ π₯ β π΄) β π₯ β π΄) | |
4 | 2, 3 | sseldd 3976 | . . 3 β’ ((π β§ π₯ β π΄) β π₯ β β) |
5 | 4 | fmpttd 7107 | . 2 β’ (π β (π₯ β π΄ β¦ π₯):π΄βΆβ) |
6 | simpr 484 | . . . . . 6 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β π¦ β€ π§) | |
7 | eqid 2724 | . . . . . . . . . 10 β’ (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯) | |
8 | 7 | a1i 11 | . . . . . . . . 9 β’ ((π β§ π¦ β π΄) β (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯)) |
9 | simpr 484 | . . . . . . . . 9 β’ (((π β§ π¦ β π΄) β§ π₯ = π¦) β π₯ = π¦) | |
10 | simpr 484 | . . . . . . . . 9 β’ ((π β§ π¦ β π΄) β π¦ β π΄) | |
11 | 8, 9, 10, 10 | fvmptd 6996 | . . . . . . . 8 β’ ((π β§ π¦ β π΄) β ((π₯ β π΄ β¦ π₯)βπ¦) = π¦) |
12 | 11 | ad2antrr 723 | . . . . . . 7 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ¦) = π¦) |
13 | 7 | a1i 11 | . . . . . . . . 9 β’ ((π β§ π§ β π΄) β (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯)) |
14 | simpr 484 | . . . . . . . . 9 β’ (((π β§ π§ β π΄) β§ π₯ = π§) β π₯ = π§) | |
15 | simpr 484 | . . . . . . . . 9 β’ ((π β§ π§ β π΄) β π§ β π΄) | |
16 | 13, 14, 15, 15 | fvmptd 6996 | . . . . . . . 8 β’ ((π β§ π§ β π΄) β ((π₯ β π΄ β¦ π₯)βπ§) = π§) |
17 | 16 | ad4ant13 748 | . . . . . . 7 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ§) = π§) |
18 | 12, 17 | breq12d 5152 | . . . . . 6 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β (((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§) β π¦ β€ π§)) |
19 | 6, 18 | mpbird 257 | . . . . 5 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§)) |
20 | 19 | ex 412 | . . . 4 β’ (((π β§ π¦ β π΄) β§ π§ β π΄) β (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
21 | 20 | ralrimiva 3138 | . . 3 β’ ((π β§ π¦ β π΄) β βπ§ β π΄ (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
22 | 21 | ralrimiva 3138 | . 2 β’ (π β βπ¦ β π΄ βπ§ β π΄ (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
23 | smfid.j | . 2 β’ π½ = (topGenβran (,)) | |
24 | smfid.b | . 2 β’ π΅ = (SalGenβπ½) | |
25 | 1, 5, 22, 23, 24 | incsmf 46003 | 1 β’ (π β (π₯ β π΄ β¦ π₯) β (SMblFnβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β wss 3941 class class class wbr 5139 β¦ cmpt 5222 ran crn 5668 βcfv 6534 βcr 11106 β€ cle 11248 (,)cioo 13325 topGenctg 17388 SalGencsalgen 45573 SMblFncsmblfn 45956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-card 9931 df-acn 9934 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12976 df-ioo 13329 df-ioc 13330 df-ico 13331 df-fl 13758 df-rest 17373 df-topgen 17394 df-top 22740 df-bases 22793 df-salg 45570 df-salgen 45574 df-smblfn 45957 |
This theorem is referenced by: smf2id 46062 |
Copyright terms: Public domain | W3C validator |