![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version |
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfid.j | ⊢ 𝐽 = (topGen‘ran (,)) |
smfid.b | ⊢ 𝐵 = (SalGen‘𝐽) |
smfid.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
smfid | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfid.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
3 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
4 | 2, 3 | sseldd 3828 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
5 | 4 | fmpttd 6639 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥):𝐴⟶ℝ) |
6 | simpr 479 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → 𝑦 ≤ 𝑧) | |
7 | eqid 2825 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
9 | simpr 479 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
10 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
11 | 8, 9, 10, 10 | fvmptd 6539 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
12 | 11 | ad2antrr 717 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
14 | simpr 479 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
15 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
16 | 13, 14, 15, 15 | fvmptd 6539 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
17 | 16 | ad4ant13 757 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
18 | 12, 17 | breq12d 4888 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → (((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) ↔ 𝑦 ≤ 𝑧)) |
19 | 6, 18 | mpbird 249 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧)) |
20 | 19 | ex 403 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
21 | 20 | ralrimiva 3175 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
22 | 21 | ralrimiva 3175 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
23 | smfid.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
24 | smfid.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
25 | 1, 5, 22, 23, 24 | incsmf 41743 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 class class class wbr 4875 ↦ cmpt 4954 ran crn 5347 ‘cfv 6127 ℝcr 10258 ≤ cle 10399 (,)cioo 12470 topGenctg 16458 SalGencsalgen 41321 SMblFncsmblfn 41701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-inf 8624 df-card 9085 df-acn 9088 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-n0 11626 df-z 11712 df-uz 11976 df-q 12079 df-rp 12120 df-ioo 12474 df-ioc 12475 df-ico 12476 df-fl 12895 df-rest 16443 df-topgen 16464 df-top 21076 df-bases 21128 df-salg 41318 df-salgen 41322 df-smblfn 41702 |
This theorem is referenced by: smf2id 41800 |
Copyright terms: Public domain | W3C validator |