![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version |
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfid.j | ⊢ 𝐽 = (topGen‘ran (,)) |
smfid.b | ⊢ 𝐵 = (SalGen‘𝐽) |
smfid.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
smfid | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfid.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
3 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
4 | 2, 3 | sseldd 3979 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
5 | 4 | fmpttd 7118 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥):𝐴⟶ℝ) |
6 | simpr 483 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → 𝑦 ≤ 𝑧) | |
7 | eqid 2726 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
9 | simpr 483 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
10 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
11 | 8, 9, 10, 10 | fvmptd 7005 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
12 | 11 | ad2antrr 724 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
14 | simpr 483 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
15 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
16 | 13, 14, 15, 15 | fvmptd 7005 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
17 | 16 | ad4ant13 749 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
18 | 12, 17 | breq12d 5156 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → (((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) ↔ 𝑦 ≤ 𝑧)) |
19 | 6, 18 | mpbird 256 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧)) |
20 | 19 | ex 411 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
21 | 20 | ralrimiva 3136 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
22 | 21 | ralrimiva 3136 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
23 | smfid.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
24 | smfid.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
25 | 1, 5, 22, 23, 24 | incsmf 46396 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3946 class class class wbr 5143 ↦ cmpt 5226 ran crn 5673 ‘cfv 6543 ℝcr 11145 ≤ cle 11287 (,)cioo 13369 topGenctg 17444 SalGencsalgen 45966 SMblFncsmblfn 46349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-inf2 9674 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9475 df-inf 9476 df-card 9972 df-acn 9975 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12256 df-n0 12516 df-z 12602 df-uz 12866 df-q 12976 df-rp 13020 df-ioo 13373 df-ioc 13374 df-ico 13375 df-fl 13803 df-rest 17429 df-topgen 17450 df-top 22881 df-bases 22934 df-salg 45963 df-salgen 45967 df-smblfn 46350 |
This theorem is referenced by: smf2id 46455 |
Copyright terms: Public domain | W3C validator |