![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version |
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfid.j | β’ π½ = (topGenβran (,)) |
smfid.b | β’ π΅ = (SalGenβπ½) |
smfid.a | β’ (π β π΄ β β) |
Ref | Expression |
---|---|
smfid | β’ (π β (π₯ β π΄ β¦ π₯) β (SMblFnβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfid.a | . 2 β’ (π β π΄ β β) | |
2 | 1 | adantr 481 | . . . 4 β’ ((π β§ π₯ β π΄) β π΄ β β) |
3 | simpr 485 | . . . 4 β’ ((π β§ π₯ β π΄) β π₯ β π΄) | |
4 | 2, 3 | sseldd 3982 | . . 3 β’ ((π β§ π₯ β π΄) β π₯ β β) |
5 | 4 | fmpttd 7111 | . 2 β’ (π β (π₯ β π΄ β¦ π₯):π΄βΆβ) |
6 | simpr 485 | . . . . . 6 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β π¦ β€ π§) | |
7 | eqid 2732 | . . . . . . . . . 10 β’ (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯) | |
8 | 7 | a1i 11 | . . . . . . . . 9 β’ ((π β§ π¦ β π΄) β (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯)) |
9 | simpr 485 | . . . . . . . . 9 β’ (((π β§ π¦ β π΄) β§ π₯ = π¦) β π₯ = π¦) | |
10 | simpr 485 | . . . . . . . . 9 β’ ((π β§ π¦ β π΄) β π¦ β π΄) | |
11 | 8, 9, 10, 10 | fvmptd 7002 | . . . . . . . 8 β’ ((π β§ π¦ β π΄) β ((π₯ β π΄ β¦ π₯)βπ¦) = π¦) |
12 | 11 | ad2antrr 724 | . . . . . . 7 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ¦) = π¦) |
13 | 7 | a1i 11 | . . . . . . . . 9 β’ ((π β§ π§ β π΄) β (π₯ β π΄ β¦ π₯) = (π₯ β π΄ β¦ π₯)) |
14 | simpr 485 | . . . . . . . . 9 β’ (((π β§ π§ β π΄) β§ π₯ = π§) β π₯ = π§) | |
15 | simpr 485 | . . . . . . . . 9 β’ ((π β§ π§ β π΄) β π§ β π΄) | |
16 | 13, 14, 15, 15 | fvmptd 7002 | . . . . . . . 8 β’ ((π β§ π§ β π΄) β ((π₯ β π΄ β¦ π₯)βπ§) = π§) |
17 | 16 | ad4ant13 749 | . . . . . . 7 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ§) = π§) |
18 | 12, 17 | breq12d 5160 | . . . . . 6 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β (((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§) β π¦ β€ π§)) |
19 | 6, 18 | mpbird 256 | . . . . 5 β’ ((((π β§ π¦ β π΄) β§ π§ β π΄) β§ π¦ β€ π§) β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§)) |
20 | 19 | ex 413 | . . . 4 β’ (((π β§ π¦ β π΄) β§ π§ β π΄) β (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
21 | 20 | ralrimiva 3146 | . . 3 β’ ((π β§ π¦ β π΄) β βπ§ β π΄ (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
22 | 21 | ralrimiva 3146 | . 2 β’ (π β βπ¦ β π΄ βπ§ β π΄ (π¦ β€ π§ β ((π₯ β π΄ β¦ π₯)βπ¦) β€ ((π₯ β π΄ β¦ π₯)βπ§))) |
23 | smfid.j | . 2 β’ π½ = (topGenβran (,)) | |
24 | smfid.b | . 2 β’ π΅ = (SalGenβπ½) | |
25 | 1, 5, 22, 23, 24 | incsmf 45444 | 1 β’ (π β (π₯ β π΄ β¦ π₯) β (SMblFnβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3947 class class class wbr 5147 β¦ cmpt 5230 ran crn 5676 βcfv 6540 βcr 11105 β€ cle 11245 (,)cioo 13320 topGenctg 17379 SalGencsalgen 45014 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-ioo 13324 df-ioc 13325 df-ico 13326 df-fl 13753 df-rest 17364 df-topgen 17385 df-top 22387 df-bases 22440 df-salg 45011 df-salgen 45015 df-smblfn 45398 |
This theorem is referenced by: smf2id 45503 |
Copyright terms: Public domain | W3C validator |