| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version | ||
| Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfid.j | ⊢ 𝐽 = (topGen‘ran (,)) |
| smfid.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| smfid.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| Ref | Expression |
|---|---|
| smfid | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfid.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | sseldd 3947 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 5 | 4 | fmpttd 7087 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥):𝐴⟶ℝ) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → 𝑦 ≤ 𝑧) | |
| 7 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 10 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 11 | 8, 9, 10, 10 | fvmptd 6975 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
| 12 | 11 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
| 13 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
| 14 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 15 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
| 16 | 13, 14, 15, 15 | fvmptd 6975 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
| 17 | 16 | ad4ant13 751 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
| 18 | 12, 17 | breq12d 5120 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → (((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) ↔ 𝑦 ≤ 𝑧)) |
| 19 | 6, 18 | mpbird 257 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧)) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 21 | 20 | ralrimiva 3125 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 22 | 21 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
| 23 | smfid.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 24 | smfid.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 25 | 1, 5, 22, 23, 24 | incsmf 46740 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 ℝcr 11067 ≤ cle 11209 (,)cioo 13306 topGenctg 17400 SalGencsalgen 46310 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-ioo 13310 df-ioc 13311 df-ico 13312 df-fl 13754 df-rest 17385 df-topgen 17406 df-top 22781 df-bases 22833 df-salg 46307 df-salgen 46311 df-smblfn 46694 |
| This theorem is referenced by: smf2id 46799 |
| Copyright terms: Public domain | W3C validator |