Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfid | Structured version Visualization version GIF version |
Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfid.j | ⊢ 𝐽 = (topGen‘ran (,)) |
smfid.b | ⊢ 𝐵 = (SalGen‘𝐽) |
smfid.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
smfid | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfid.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
2 | 1 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
3 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
4 | 2, 3 | sseldd 3927 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
5 | 4 | fmpttd 7021 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥):𝐴⟶ℝ) |
6 | simpr 486 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → 𝑦 ≤ 𝑧) | |
7 | eqid 2736 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
9 | simpr 486 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
10 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
11 | 8, 9, 10, 10 | fvmptd 6914 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
12 | 11 | ad2antrr 724 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) = 𝑦) |
13 | 7 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ 𝑥) = (𝑥 ∈ 𝐴 ↦ 𝑥)) |
14 | simpr 486 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝐴) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
15 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | |
16 | 13, 14, 15, 15 | fvmptd 6914 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
17 | 16 | ad4ant13 749 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) = 𝑧) |
18 | 12, 17 | breq12d 5094 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → (((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧) ↔ 𝑦 ≤ 𝑧)) |
19 | 6, 18 | mpbird 257 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≤ 𝑧) → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧)) |
20 | 19 | ex 414 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
21 | 20 | ralrimiva 3140 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
22 | 21 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝑥)‘𝑧))) |
23 | smfid.j | . 2 ⊢ 𝐽 = (topGen‘ran (,)) | |
24 | smfid.b | . 2 ⊢ 𝐵 = (SalGen‘𝐽) | |
25 | 1, 5, 22, 23, 24 | incsmf 44330 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (SMblFn‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ⊆ wss 3892 class class class wbr 5081 ↦ cmpt 5164 ran crn 5601 ‘cfv 6458 ℝcr 10916 ≤ cle 11056 (,)cioo 13125 topGenctg 17193 SalGencsalgen 43902 SMblFncsmblfn 44283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-card 9741 df-acn 9744 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-ioo 13129 df-ioc 13130 df-ico 13131 df-fl 13558 df-rest 17178 df-topgen 17199 df-top 22088 df-bases 22141 df-salg 43899 df-salgen 43903 df-smblfn 44284 |
This theorem is referenced by: smf2id 44389 |
Copyright terms: Public domain | W3C validator |