Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fodomg | Structured version Visualization version GIF version |
Description: An onto function implies dominance of domain over range. Lemma 10.20 of [Kunen] p. 30. This theorem uses the axiom of choice ac7g 10303. The axiom of choice is not needed for finite sets, see fodomfi 9162. See also fodomnum 9886. (Contributed by NM, 23-Jul-2004.) (Proof shortened by BJ, 20-May-2024.) |
Ref | Expression |
---|---|
fodomg | ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numth3 10299 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ dom card) | |
2 | fodomnum 9886 | . 2 ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5087 dom cdm 5607 –onto→wfo 6463 ≼ cdom 8779 cardccrd 9764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-ac2 10292 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-card 9768 df-acn 9771 df-ac 9945 |
This theorem is referenced by: fodom 10352 dmct 10353 fodomb 10355 imadomg 10363 fnrndomg 10365 disjinfi 42959 |
Copyright terms: Public domain | W3C validator |