MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomg Structured version   Visualization version   GIF version

Theorem fodomg 10516
Description: An onto function implies dominance of domain over range. Lemma 10.20 of [Kunen] p. 30. This theorem uses the axiom of choice ac7g 10468. The axiom of choice is not needed for finite sets, see fodomfi 9324. See also fodomnum 10051. (Contributed by NM, 23-Jul-2004.) (Proof shortened by BJ, 20-May-2024.)
Assertion
Ref Expression
fodomg (𝐴𝑉 → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomg
StepHypRef Expression
1 numth3 10464 . 2 (𝐴𝑉𝐴 ∈ dom card)
2 fodomnum 10051 . 2 (𝐴 ∈ dom card → (𝐹:𝐴onto𝐵𝐵𝐴))
31, 2syl 17 1 (𝐴𝑉 → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5141  dom cdm 5669  ontowfo 6534  cdom 8936  cardccrd 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-card 9933  df-acn 9936  df-ac 10110
This theorem is referenced by:  fodom  10517  dmct  10518  fodomb  10520  imadomg  10528  fnrndomg  10530  disjinfi  44444
  Copyright terms: Public domain W3C validator