MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayle Structured version   Visualization version   GIF version

Theorem bdayle 27861
Description: A condition for bounding a birthday above. (Contributed by Scott Fenton, 22-Nov-2025.)
Assertion
Ref Expression
bdayle ((𝑋 No ∧ Ord 𝑂) → (( bday 𝑋) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday 𝑋))( bday 𝑦) ∈ 𝑂))
Distinct variable groups:   𝑦,𝑋   𝑦,𝑂

Proof of Theorem bdayle
StepHypRef Expression
1 bdayiun 27860 . . 3 (𝑋 No → ( bday 𝑋) = 𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦))
21sseq1d 3961 . 2 (𝑋 No → (( bday 𝑋) ⊆ 𝑂 𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦) ⊆ 𝑂))
3 iunss 4992 . . 3 ( 𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦) ⊆ 𝑂)
4 fvex 6835 . . . . 5 ( bday 𝑦) ∈ V
5 ordelsuc 7750 . . . . 5 ((( bday 𝑦) ∈ V ∧ Ord 𝑂) → (( bday 𝑦) ∈ 𝑂 ↔ suc ( bday 𝑦) ⊆ 𝑂))
64, 5mpan 690 . . . 4 (Ord 𝑂 → (( bday 𝑦) ∈ 𝑂 ↔ suc ( bday 𝑦) ⊆ 𝑂))
76ralbidv 3155 . . 3 (Ord 𝑂 → (∀𝑦 ∈ ( O ‘( bday 𝑋))( bday 𝑦) ∈ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦) ⊆ 𝑂))
83, 7bitr4id 290 . 2 (Ord 𝑂 → ( 𝑦 ∈ ( O ‘( bday 𝑋))suc ( bday 𝑦) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday 𝑋))( bday 𝑦) ∈ 𝑂))
92, 8sylan9bb 509 1 ((𝑋 No ∧ Ord 𝑂) → (( bday 𝑋) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday 𝑋))( bday 𝑦) ∈ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  Vcvv 3436  wss 3897   ciun 4939  Ord word 6305  suc csuc 6308  cfv 6481   No csur 27578   bday cbday 27580   O cold 27784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator