| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayle | Structured version Visualization version GIF version | ||
| Description: A condition for bounding a birthday above. (Contributed by Scott Fenton, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| bdayle | ⊢ ((𝑋 ∈ No ∧ Ord 𝑂) → (( bday ‘𝑋) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))( bday ‘𝑦) ∈ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayiun 27860 | . . 3 ⊢ (𝑋 ∈ No → ( bday ‘𝑋) = ∪ 𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦)) | |
| 2 | 1 | sseq1d 3961 | . 2 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) ⊆ 𝑂 ↔ ∪ 𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦) ⊆ 𝑂)) |
| 3 | iunss 4992 | . . 3 ⊢ (∪ 𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦) ⊆ 𝑂) | |
| 4 | fvex 6835 | . . . . 5 ⊢ ( bday ‘𝑦) ∈ V | |
| 5 | ordelsuc 7750 | . . . . 5 ⊢ ((( bday ‘𝑦) ∈ V ∧ Ord 𝑂) → (( bday ‘𝑦) ∈ 𝑂 ↔ suc ( bday ‘𝑦) ⊆ 𝑂)) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (Ord 𝑂 → (( bday ‘𝑦) ∈ 𝑂 ↔ suc ( bday ‘𝑦) ⊆ 𝑂)) |
| 7 | 6 | ralbidv 3155 | . . 3 ⊢ (Ord 𝑂 → (∀𝑦 ∈ ( O ‘( bday ‘𝑋))( bday ‘𝑦) ∈ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦) ⊆ 𝑂)) |
| 8 | 3, 7 | bitr4id 290 | . 2 ⊢ (Ord 𝑂 → (∪ 𝑦 ∈ ( O ‘( bday ‘𝑋))suc ( bday ‘𝑦) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))( bday ‘𝑦) ∈ 𝑂)) |
| 9 | 2, 8 | sylan9bb 509 | 1 ⊢ ((𝑋 ∈ No ∧ Ord 𝑂) → (( bday ‘𝑋) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))( bday ‘𝑦) ∈ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∪ ciun 4939 Ord word 6305 suc csuc 6308 ‘cfv 6481 No csur 27578 bday cbday 27580 O cold 27784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-made 27788 df-old 27789 df-left 27791 df-right 27792 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |